ich danke allen trostspendern !
habe im www so etwas wie hershey vector fonts gefunden.
nach etwas herumgewurstle habe ich das zeug in MM taugliche koordinaten gewandelt.
die zeichen des fonts sind im array h tabelliert.
h besteht aus 94 ASCII zeichen beginnend mit ASCII 33 "!" bei h[[1]]
demnach findet man ASCII 65 "A" bei h[[65-32]]
macht zwar nicht wirklich glücklich, aber vieleicht perfektioniert das noch wer ?
hiermit kann man sich den gesamten font übrigens ansehen:
Table[Map[# + {20 i, 0} &, h[[i]], {2}] // Line /@ # & // Graphics[{
Thickness[.002], #}] &, {i, 1, 94}] // Show[#,
AspectRatio -> Automatic] &
und hier kommt h,
h kommt hier noch lange nicht, vorher noch grüsse robert
h=
{{{{5, 21}, {5, 7}}, {{5, 2}, {4, 1}, {5, 0}, {6, 1}, {5, 2}}},
{{{4, 21}, {4, 14}}, {{12, 21}, {12, 14}}},
{{{11, 25}, {4, -7}}, {{17, 25}, {10, -7}}, {{4, 12}, {18, 12}},
{{3, 6}, {17, 6}}}, {{{8, 25}, {8, -4}}, {{12, 25}, {12, -4}},
{{17, 18}, {15, 20}, {12, 21}, {8, 21}, {5, 20}, {3, 18},
{3, 16}, {4, 14}, {5, 13}, {7, 12}, {13, 10}, {15, 9}, {16, 8},
{17, 6}, {17, 3}, {15, 1}, {12, 0}, {8, 0}, {5, 1}, {3, 3}}},
{{{21, 21}, {3, 0}}, {{8, 21}, {10, 19}, {10, 17}, {9, 15},
{7, 14}, {5, 14}, {3, 16}, {3, 18}, {4, 20}, {6, 21}, {8, 21},
{10, 20}, {13, 19}, {16, 19}, {19, 20}, {21, 21}},
{{17, 7}, {15, 6}, {14, 4}, {14, 2}, {16, 0}, {18, 0}, {20, 1},
{21, 3}, {21, 5}, {19, 7}, {17, 7}}},
{{{23, 12}, {23, 13}, {22, 14}, {21, 14}, {20, 13}, {19, 11},
{17, 6}, {15, 3}, {13, 1}, {11, 0}, {7, 0}, {5, 1}, {4, 2},
{3, 4}, {3, 6}, {4, 8}, {5, 9}, {12, 13}, {13, 14}, {14, 16},
{14, 18}, {13, 20}, {11, 21}, {9, 20}, {8, 18}, {8, 16},
{9, 13}, {11, 10}, {16, 3}, {18, 1}, {20, 0}, {22, 0}, {23, 1},
{23, 2}}}, {{{5, 19}, {4, 20}, {5, 21}, {6, 20}, {6, 18},
{5, 16}, {4, 15}}}, {{{11, 25}, {9, 23}, {7, 20}, {5, 16},
{4, 11}, {4, 7}, {5, 2}, {7, -2}, {9, -5}, {11, -7}}},
{{{3, 25}, {5, 23}, {7, 20}, {9, 16}, {10, 11}, {10, 7}, {9, 2},
{7, -2}, {5, -5}, {3, -7}}}, {{{8, 21}, {8, 9}},
{{3, 18}, {13, 12}}, {{13, 18}, {3, 12}}},
{{{13, 18}, {13, 0}}, {{4, 9}, {22, 9}}},
{{{6, 1}, {5, 0}, {4, 1}, {5, 2}, {6, 1}, {6, -1}, {5, -3},
{4, -4}}}, {{{4, 9}, {22, 9}}},
{{{5, 2}, {4, 1}, {5, 0}, {6, 1}, {5, 2}}},
{{{20, 25}, {2, -7}}}, {{{9, 21}, {6, 20}, {4, 17}, {3, 12},
{3, 9}, {4, 4}, {6, 1}, {9, 0}, {11, 0}, {14, 1}, {16, 4},
{17, 9}, {17, 12}, {16, 17}, {14, 20}, {11, 21}, {9, 21}}},
{{{6, 17}, {8, 18}, {11, 21}, {11, 0}}},
{{{4, 16}, {4, 17}, {5, 19}, {6, 20}, {8, 21}, {12, 21},
{14, 20}, {15, 19}, {16, 17}, {16, 15}, {15, 13}, {13, 10},
{3, 0}, {17, 0}}}, {{{5, 21}, {16, 21}, {10, 13}, {13, 13},
{15, 12}, {16, 11}, {17, 8}, {17, 6}, {16, 3}, {14, 1},
{11, 0}, {8, 0}, {5, 1}, {4, 2}, {3, 4}}},
{{{13, 21}, {3, 7}, {18, 7}}, {{13, 21}, {13, 0}}},
{{{15, 21}, {5, 21}, {4, 12}, {5, 13}, {8, 14}, {11, 14},
{14, 13}, {16, 11}, {17, 8}, {17, 6}, {16, 3}, {14, 1},
{11, 0}, {8, 0}, {5, 1}, {4, 2}, {3, 4}}},
{{{16, 18}, {15, 20}, {12, 21}, {10, 21}, {7, 20}, {5, 17},
{4, 12}, {4, 7}, {5, 3}, {7, 1}, {10, 0}, {11, 0}, {14, 1},
{16, 3}, {17, 6}, {17, 7}, {16, 10}, {14, 12}, {11, 13},
{10, 13}, {7, 12}, {5, 10}, {4, 7}}},
{{{17, 21}, {7, 0}}, {{3, 21}, {17, 21}}},
{{{8, 21}, {5, 20}, {4, 18}, {4, 16}, {5, 14}, {7, 13}, {11, 12},
{14, 11}, {16, 9}, {17, 7}, {17, 4}, {16, 2}, {15, 1}, {12, 0},
{8, 0}, {5, 1}, {4, 2}, {3, 4}, {3, 7}, {4, 9}, {6, 11},
{9, 12}, {13, 13}, {15, 14}, {16, 16}, {16, 18}, {15, 20},
{12, 21}, {8, 21}}}, {{{16, 14}, {15, 11}, {13, 9}, {10, 8},
{9, 8}, {6, 9}, {4, 11}, {3, 14}, {3, 15}, {4, 18}, {6, 20},
{9, 21}, {10, 21}, {13, 20}, {15, 18}, {16, 14}, {16, 9},
{15, 4}, {13, 1}, {10, 0}, {8, 0}, {5, 1}, {4, 3}}},
{{{5, 14}, {4, 13}, {5, 12}, {6, 13}, {5, 14}},
{{5, 2}, {4, 1}, {5, 0}, {6, 1}, {5, 2}}},
{{{5, 14}, {4, 13}, {5, 12}, {6, 13}, {5, 14}},
{{6, 1}, {5, 0}, {4, 1}, {5, 2}, {6, 1}, {6, -1}, {5, -3},
{4, -4}}}, {{{20, 18}, {4, 9}, {20, 0}}},
{{{4, 12}, {22, 12}}, {{4, 6}, {22, 6}}},
{{{4, 18}, {20, 9}, {4, 0}}},
{{{3, 16}, {3, 17}, {4, 19}, {5, 20}, {7, 21}, {11, 21},
{13, 20}, {14, 19}, {15, 17}, {15, 15}, {14, 13}, {13, 12},
{9, 10}, {9, 7}}, {{9, 2}, {8, 1}, {9, 0}, {10, 1}, {9, 2}}},
{{{18, 13}, {17, 15}, {15, 16}, {12, 16}, {10, 15}, {9, 14},
{8, 11}, {8, 8}, {9, 6}, {11, 5}, {14, 5}, {16, 6}, {17, 8}},
{{12, 16}, {10, 14}, {9, 11}, {9, 8}, {10, 6}, {11, 5}},
{{18, 16}, {17, 8}, {17, 6}, {19, 5}, {21, 5}, {23, 7},
{24, 10}, {24, 12}, {23, 15}, {22, 17}, {20, 19}, {18, 20},
{15, 21}, {12, 21}, {9, 20}, {7, 19}, {5, 17}, {4, 15},
{3, 12}, {3, 9}, {4, 6}, {5, 4}, {7, 2}, {9, 1}, {12, 0},
{15, 0}, {18, 1}, {20, 2}, {21, 3}}, {{19, 16}, {18, 8},
{18, 6}, {19, 5}}}, {{{9, 21}, {1, 0}}, {{9, 21}, {17, 0}},
{{4, 7}, {14, 7}}}, {{{4, 21}, {4, 0}},
{{4, 21}, {13, 21}, {16, 20}, {17, 19}, {18, 17}, {18, 15},
{17, 13}, {16, 12}, {13, 11}}, {{4, 11}, {13, 11}, {16, 10},
{17, 9}, {18, 7}, {18, 4}, {17, 2}, {16, 1}, {13, 0}, {4, 0}}},
{{{18, 16}, {17, 18}, {15, 20}, {13, 21}, {9, 21}, {7, 20},
{5, 18}, {4, 16}, {3, 13}, {3, 8}, {4, 5}, {5, 3}, {7, 1},
{9, 0}, {13, 0}, {15, 1}, {17, 3}, {18, 5}}},
{{{4, 21}, {4, 0}}, {{4, 21}, {11, 21}, {14, 20}, {16, 18},
{17, 16}, {18, 13}, {18, 8}, {17, 5}, {16, 3}, {14, 1},
{11, 0}, {4, 0}}}, {{{4, 21}, {4, 0}}, {{4, 21}, {17, 21}},
{{4, 11}, {12, 11}}, {{4, 0}, {17, 0}}},
{{{4, 21}, {4, 0}}, {{4, 21}, {17, 21}}, {{4, 11}, {12, 11}}},
{{{18, 16}, {17, 18}, {15, 20}, {13, 21}, {9, 21}, {7, 20},
{5, 18}, {4, 16}, {3, 13}, {3, 8}, {4, 5}, {5, 3}, {7, 1},
{9, 0}, {13, 0}, {15, 1}, {17, 3}, {18, 5}, {18, 8}},
{{13, 8}, {18, 8}}}, {{{4, 21}, {4, 0}}, {{18, 21}, {18, 0}},
{{4, 11}, {18, 11}}}, {{{4, 21}, {4, 0}}},
{{{12, 21}, {12, 5}, {11, 2}, {10, 1}, {8, 0}, {6, 0}, {4, 1},
{3, 2}, {2, 5}, {2, 7}}}, {{{4, 21}, {4, 0}},
{{18, 21}, {4, 7}}, {{9, 12}, {18, 0}}},
{{{4, 21}, {4, 0}}, {{4, 0}, {16, 0}}},
{{{4, 21}, {4, 0}}, {{4, 21}, {12, 0}}, {{20, 21}, {12, 0}},
{{20, 21}, {20, 0}}}, {{{4, 21}, {4, 0}}, {{4, 21}, {18, 0}},
{{18, 21}, {18, 0}}}, {{{9, 21}, {7, 20}, {5, 18}, {4, 16},
{3, 13}, {3, 8}, {4, 5}, {5, 3}, {7, 1}, {9, 0}, {13, 0},
{15, 1}, {17, 3}, {18, 5}, {19, 8}, {19, 13}, {18, 16},
{17, 18}, {15, 20}, {13, 21}, {9, 21}}},
{{{4, 21}, {4, 0}}, {{4, 21}, {13, 21}, {16, 20}, {17, 19},
{18, 17}, {18, 14}, {17, 12}, {16, 11}, {13, 10}, {4, 10}}},
{{{9, 21}, {7, 20}, {5, 18}, {4, 16}, {3, 13}, {3, 8}, {4, 5},
{5, 3}, {7, 1}, {9, 0}, {13, 0}, {15, 1}, {17, 3}, {18, 5},
{19, 8}, {19, 13}, {18, 16}, {17, 18}, {15, 20}, {13, 21},
{9, 21}}, {{12, 4}, {18, -2}}}, {{{4, 21}, {4, 0}},
{{4, 21}, {13, 21}, {16, 20}, {17, 19}, {18, 17}, {18, 15},
{17, 13}, {16, 12}, {13, 11}, {4, 11}}, {{11, 11}, {18, 0}}},
{{{17, 18}, {15, 20}, {12, 21}, {8, 21}, {5, 20}, {3, 18},
{3, 16}, {4, 14}, {5, 13}, {7, 12}, {13, 10}, {15, 9}, {16, 8},
{17, 6}, {17, 3}, {15, 1}, {12, 0}, {8, 0}, {5, 1}, {3, 3}}},
{{{8, 21}, {8, 0}}, {{1, 21}, {15, 21}}},
{{{4, 21}, {4, 6}, {5, 3}, {7, 1}, {10, 0}, {12, 0}, {15, 1},
{17, 3}, {18, 6}, {18, 21}}}, {{{1, 21}, {9, 0}},
{{17, 21}, {9, 0}}}, {{{2, 21}, {7, 0}}, {{12, 21}, {7, 0}},
{{12, 21}, {17, 0}}, {{22, 21}, {17, 0}}},
{{{3, 21}, {17, 0}}, {{17, 21}, {3, 0}}},
{{{1, 21}, {9, 11}, {9, 0}}, {{17, 21}, {9, 11}}},
{{{17, 21}, {3, 0}}, {{3, 21}, {17, 21}}, {{3, 0}, {17, 0}}},
{{{4, 25}, {4, -7}}, {{5, 25}, {5, -7}}, {{4, 25}, {11, 25}},
{{4, -7}, {11, -7}}}, {{{0, 21}, {14, -3}}},
{{{9, 25}, {9, -7}}, {{10, 25}, {10, -7}}, {{3, 25}, {10, 25}},
{{3, -7}, {10, -7}}}, {{{6, 15}, {8, 18}, {10, 15}},
{{3, 12}, {8, 17}, {13, 12}}, {{8, 17}, {8, 0}}},
{{{0, -2}, {16, -2}}}, {{{6, 21}, {5, 20}, {4, 18}, {4, 16},
{5, 15}, {6, 16}, {5, 17}}}, {{{15, 14}, {15, 0}},
{{15, 11}, {13, 13}, {11, 14}, {8, 14}, {6, 13}, {4, 11},
{3, 8}, {3, 6}, {4, 3}, {6, 1}, {8, 0}, {11, 0}, {13, 1},
{15, 3}}}, {{{4, 21}, {4, 0}}, {{4, 11}, {6, 13}, {8, 14},
{11, 14}, {13, 13}, {15, 11}, {16, 8}, {16, 6}, {15, 3},
{13, 1}, {11, 0}, {8, 0}, {6, 1}, {4, 3}}},
{{{15, 11}, {13, 13}, {11, 14}, {8, 14}, {6, 13}, {4, 11},
{3, 8}, {3, 6}, {4, 3}, {6, 1}, {8, 0}, {11, 0}, {13, 1},
{15, 3}}}, {{{15, 21}, {15, 0}}, {{15, 11}, {13, 13}, {11, 14},
{8, 14}, {6, 13}, {4, 11}, {3, 8}, {3, 6}, {4, 3}, {6, 1},
{8, 0}, {11, 0}, {13, 1}, {15, 3}}},
{{{3, 8}, {15, 8}, {15, 10}, {14, 12}, {13, 13}, {11, 14},
{8, 14}, {6, 13}, {4, 11}, {3, 8}, {3, 6}, {4, 3}, {6, 1},
{8, 0}, {11, 0}, {13, 1}, {15, 3}}},
{{{10, 21}, {8, 21}, {6, 20}, {5, 17}, {5, 0}},
{{2, 14}, {9, 14}}}, {{{15, 14}, {15, -2}, {14, -5}, {13, -6},
{11, -7}, {8, -7}, {6, -6}}, {{15, 11}, {13, 13}, {11, 14},
{8, 14}, {6, 13}, {4, 11}, {3, 8}, {3, 6}, {4, 3}, {6, 1},
{8, 0}, {11, 0}, {13, 1}, {15, 3}}},
{{{4, 21}, {4, 0}}, {{4, 10}, {7, 13}, {9, 14}, {12, 14},
{14, 13}, {15, 10}, {15, 0}}},
{{{3, 21}, {4, 20}, {5, 21}, {4, 22}, {3, 21}},
{{4, 14}, {4, 0}}}, {{{5, 21}, {6, 20}, {7, 21}, {6, 22},
{5, 21}}, {{6, 14}, {6, -3}, {5, -6}, {3, -7}, {1, -7}}},
{{{4, 21}, {4, 0}}, {{14, 14}, {4, 4}}, {{8, 8}, {15, 0}}},
{{{4, 21}, {4, 0}}}, {{{4, 14}, {4, 0}},
{{4, 10}, {7, 13}, {9, 14}, {12, 14}, {14, 13}, {15, 10},
{15, 0}}, {{15, 10}, {18, 13}, {20, 14}, {23, 14}, {25, 13},
{26, 10}, {26, 0}}}, {{{4, 14}, {4, 0}},
{{4, 10}, {7, 13}, {9, 14}, {12, 14}, {14, 13}, {15, 10},
{15, 0}}}, {{{8, 14}, {6, 13}, {4, 11}, {3, 8}, {3, 6}, {4, 3},
{6, 1}, {8, 0}, {11, 0}, {13, 1}, {15, 3}, {16, 6}, {16, 8},
{15, 11}, {13, 13}, {11, 14}, {8, 14}}},
{{{4, 14}, {4, -7}}, {{4, 11}, {6, 13}, {8, 14}, {11, 14},
{13, 13}, {15, 11}, {16, 8}, {16, 6}, {15, 3}, {13, 1},
{11, 0}, {8, 0}, {6, 1}, {4, 3}}}, {{{15, 14}, {15, -7}},
{{15, 11}, {13, 13}, {11, 14}, {8, 14}, {6, 13}, {4, 11},
{3, 8}, {3, 6}, {4, 3}, {6, 1}, {8, 0}, {11, 0}, {13, 1},
{15, 3}}}, {{{4, 14}, {4, 0}}, {{4, 8}, {5, 11}, {7, 13},
{9, 14}, {12, 14}}}, {{{14, 11}, {13, 13}, {10, 14}, {7, 14},
{4, 13}, {3, 11}, {4, 9}, {6, 8}, {11, 7}, {13, 6}, {14, 4},
{14, 3}, {13, 1}, {10, 0}, {7, 0}, {4, 1}, {3, 3}}},
{{{5, 21}, {5, 4}, {6, 1}, {8, 0}, {10, 0}}, {{2, 14}, {9, 14}}},
{{{4, 14}, {4, 4}, {5, 1}, {7, 0}, {10, 0}, {12, 1}, {15, 4}},
{{15, 14}, {15, 0}}}, {{{2, 14}, {8, 0}}, {{14, 14}, {8, 0}}},
{{{3, 14}, {7, 0}}, {{11, 14}, {7, 0}}, {{11, 14}, {15, 0}},
{{19, 14}, {15, 0}}}, {{{3, 14}, {14, 0}}, {{14, 14}, {3, 0}}},
{{{2, 14}, {8, 0}}, {{14, 14}, {8, 0}, {6, -4}, {4, -6}, {2, -7},
{1, -7}}}, {{{14, 14}, {3, 0}}, {{3, 14}, {14, 14}},
{{3, 0}, {14, 0}}}, {{{9, 25}, {7, 24}, {6, 23}, {5, 21},
{5, 19}, {6, 17}, {7, 16}, {8, 14}, {8, 12}, {6, 10}},
{{7, 24}, {6, 22}, {6, 20}, {7, 18}, {8, 17}, {9, 15}, {9, 13},
{8, 11}, {4, 9}, {8, 7}, {9, 5}, {9, 3}, {8, 1}, {7, 0},
{6, -2}, {6, -4}, {7, -6}}, {{6, 8}, {8, 6}, {8, 4}, {7, 2},
{6, 1}, {5, -1}, {5, -3}, {6, -5}, {7, -6}, {9, -7}}},
{{{4, 25}, {4, -7}}}, {{{5, 25}, {7, 24}, {8, 23}, {9, 21},
{9, 19}, {8, 17}, {7, 16}, {6, 14}, {6, 12}, {8, 10}},
{{7, 24}, {8, 22}, {8, 20}, {7, 18}, {6, 17}, {5, 15}, {5, 13},
{6, 11}, {10, 9}, {6, 7}, {5, 5}, {5, 3}, {6, 1}, {7, 0},
{8, -2}, {8, -4}, {7, -6}}, {{8, 8}, {6, 6}, {6, 4}, {7, 2},
{8, 1}, {9, -1}, {9, -3}, {8, -5}, {7, -6}, {5, -7}}},
{{{3, 6}, {3, 8}, {4, 11}, {6, 12}, {8, 12}, {10, 11}, {14, 8},
{16, 7}, {18, 7}, {20, 8}, {21, 10}},
{{3, 8}, {4, 10}, {6, 11}, {8, 11}, {10, 10}, {14, 7}, {16, 6},
{18, 6}, {20, 7}, {21, 10}, {21, 12}}}};
-----Original Message-----
From: Jens-Peer Kuska [mailto:kuska@XXXXXXX.de]
Sent: Wednesday, May 14, 2003 3:44 PM
To: Nowak Robert
Cc: Deutsche Mathematica News Group
Subject: Re: FontSize
Hallo,
hier mein aufrichtiges Beileid.
Es geht nicht und schon
garnicht einfach. Es geht nicht, weil
a) Text[] nichts von der
"ubergeordneten ImageSize Option weiss
b) eine gr"ossere Schrift eine andere Position
der Zeichen erfordert
c) man die PostScript Funktion zu Font-Auswahl
"uber/umschreiben muss
F"ur letzteres muss man die MathScale des PostScript
auswerten irgendwo zwischen speichern und die launigen Eintr"age im PostScript alla
%%IncludeFont: Courier
/Courier findfont 10.000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
durch
%%IncludeFont: Courier
/Courier findfont 10.000 ImageSizeFactor mul scalefont
[1 0 0 -1 0 0 ] makefont setfont
ersetzen
also nehmen wir mal an, die Schrift in gr soll 10 mal gr"osser werden dann
tmp = ImportString[
StringReplace["/ImageSizeFactor 10 def\n" <> DisplayString[gr, "MPS"],
"scalefont" -> "ImageSizeFactor mul scalefont"], "MPS"]; Show[tmp]
das ist jetzt sch"on gross oder ?
Leider "uberlappen sich separat plazierte Teile der Beschriftung weil das FrontEnd die Strings schon absolut plaziert
hat und dabei nichts von der skalierten Gr"osse ahnte. Die Ausrichung ist nat"urlich auch im Eimer, es sieht also auch
mit einem moderaten 1.2 Faktor graulich aus.
Zu allem "Uberfluss scheint ImportString[] die Mathematica fonts zu ignorieren und einfach alle Fonts mit Courier zu
"uberschreiben, wie man an
gr=Plot[Sin[x],{x,0,Pi},FrameLabel\[Rule]{\[Phi],Sin[\[Phi]]}]
Show[ImportString[ExportString[gr, "MPS"], "MPS"]]
sieht, in dem statt des \[Phi] ein f erscheint weil ImprtString[] vorsorglich noch mal eine /Courier findfont einf"ugt
und so die /Mathematica1Mono font "uberschreibt, wie man
an:
%%IncludeResource: font Mathematica1Mono
%%IncludeFont: Mathematica1Mono
/Mathematica1Mono findfont 10.000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000 0.000 0.000 setrgbcolor
0.000 0.000 rmoveto
63.000 11.250 moveto
% DIESER BLOEDSINN KOMMT VOM ImportString[]
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000 0.000 0.000 setrgbcolor
(f) show
sieht. Mathematica erkennt also seine *eigenen*
Fonts nicht ...
So und jetzt kannst Du nach Leipzig kommen und
wir weinen mal ein bischen gemeinsam ...
Sind das genug tr"ostende Worte ?
und Beileidsbekundungen ??
ich hoffe es hilft Dir Deine emotionale Stabilit"at
wieder zu erlangen, auf jeden Fall war es gut, das
wir mal dr"uber geredet haben.
Gruss
Jens
Nowak Robert wrote:
>
> hallo liste
>
> wie den was den ?
>
> nicht einmal tröstende worte oder beileidsäusserungen ?
>
> grüsse robert
>
> -----Original Message-----
> From: Nowak Robert
> Sent: Monday, May 12, 2003 11:59 AM
> To: dmug@XXXXXXX.ch
> Subject:
>
> hallo liste,
>
> gibt es in MM eine "einfache" möglichkeit schriften zu generieren
> deren grösse relativ zur grösse der aktuellen grafik spezifiziert ist
> im gegensatz zur absoluten grössenangabe TextStyle->{FontSize->s} (so
> wie z.b. Thicknes[] die relative breite von linien spezifiziert) ?
>
> danke und grüsse
> robert
>
> -------------------------------
> Robert NOWAK
> IMS Nanofabrication GmbH
> Schreygasse 3
> A-1020 Vienna, Austria / Europe
> phone: +43-1-2144894-32
> fax: +43-1-2144894-99
> e-mail: robert.nowak@XXXXXXX.at
> web: www.ims.co.at