hallo:
bereits vor einiger zeit hatte ich eine frage bzgl.
auflösen / vereinfachen. Die Antworten helfen mir für
das jetztige problem leider nicht weiter.
Die Ausgangslage (siehe .nb im anhang):
ich habe sechzehn parameter (a_1 ... a_3, h_1 ... h_6,
m_1 ... m_7) gegeben und zusätzlich zwei
reaktionsfunktionen (i und d), die sich mit hilfe
jener paramter vereinfachen lassen, d.h.: i((a_1 ...
a_3, h_1 ... h_6) und d((a_1 ... a_3, h_1 ... h_6, m_1
.. m_7)).
Das Problem:
Wie schaffe ich es mit mathematica, meine beiden
reaktionsfunktionen zu vereinfachen, indem ich die
gegebenen paramter einsetze und somit vereinfache?
vielen dank.
es grüßt
nic
___________________________________________________________
Telefonate ohne weitere Kosten vom PC zum PC: http://messenger.yahoo.de
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.0'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@XXXXXXX.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 28434, 505]*)
(*NotebookOutlinePosition[ 29139, 529]*)
(* CellTagsIndexPosition[ 29095, 525]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[BoxData[
\(Gegebene\ Paramter\ f\[UDoubleDot]r\ h1\ - \ h6, \ \ a1 -
a3\ und\ m1 - \(\(m7\)\(:\)\)\)], "Input"],
Cell[BoxData[
\(\(\(\ \)\(\((1\/\(1 + \(\[Phi]\_1\) \[Alpha] + \[Gamma]\))\) \
\((\((\(\((1 + \[Phi]\_1\ \[Alpha])\) \[Phi]\_1\)\/\(1 + \[Phi]\_1\ \[Alpha]\ \
- \[Gamma]\))\) - \((\(\[Phi]\_1\ \[Delta]\)\/\(\[Omega] \((1 + \[Phi]\_1\ \
\[Alpha] + \[Gamma])\) + 2 \[Delta]\))\))\) \[Rule] \
h\_1, \ \((1\/\(1 + \(\[Phi]\_1\) \[Alpha] + \[Gamma]\))\) \((\((\(\
\[Gamma]\ \[Phi]\_1\)\/\(1 + \[Phi]\_1\ \[Alpha]\ - \[Gamma]\))\) + \((\(\
\[Phi]\_1\ \[Delta]\)\/\(\[Omega] \((1 + \[Phi]\_1\ \[Alpha] + \[Gamma])\) + \
2 \[Delta]\))\))\) \[Rule] \
h\_2, \ \(-\((\[Phi]\_2\/\(1 + \(\[Phi]\_1\) \[Alpha] - \[Gamma]\))\)\) \
\[Rule] \
h\_3, \ \((1\/\(1 + \(\[Phi]\_1\) \[Alpha] + \[Gamma]\))\) \((\((\(1 + \
\[Phi]\_1\ \[Alpha]\)\/\(1 + \[Phi]\_1\ \[Alpha] - \[Gamma]\))\) - \((\(\(\ \
\)\(\[Delta]\)\)\/\(\[Omega] \((1 + \[Phi]\_1\ \[Alpha] + \[Gamma])\) + 2 \
\[Delta]\))\))\) \[Rule] \
h\_4, \ \ \((1\/\(1 + \(\[Phi]\_1\) \[Alpha] + \[Gamma]\))\) \((\((\
\[Gamma]\/\(1 + \(\[Phi]\_1\) \[Alpha] - \[Gamma]\))\) + \((\(\(\ \
\)\(\[Delta]\)\)\/\(\[Omega] \((1 + \[Phi]\_1\ \[Alpha] + \[Gamma])\) + 2 \
\[Delta]\))\))\) \[Rule] \
h\_5, \[IndentingNewLine]\ \((\[Delta]\/\(\[Omega] \((1 + \[Phi]\_1\ \
\[Alpha] + \[Gamma])\) + 2 \[Delta]\))\) \[Rule] \ h\_6\)\)\)], "Input"],
Cell[BoxData[
\(\(\({\ h\_1 + \[Eta]\ h\_2 \[Rule] \ m\_1, \
h\_2 + \[Eta]\ h\_1 \[Rule] \ m\_2, \ \ \((1 + \[Eta])\) h\_3 \[Rule] \
m\_3, \ \ h\_4 + \[Eta]\ h\_5 \[Rule] \
m\_4, \ \ h\_5 + \[Eta]\ h\_4 \[Rule]
m\_5\ , \ \ \((1 - \[Eta])\) h\_6 - 1 \[Rule] \
m\_6, \ \((\[Eta] - 1)\) h\_6 - \[Eta] \[Rule] \
m\_7}\)\(\[IndentingNewLine]\)
\)\)], "Input"],
Cell[BoxData[
\({\ \(-\((\(\(h\_3\) \((h\_1 + h\_2)\)\)\/\(2 \((h\_3\^2 + \[Beta]\ \
\[Omega]\^2)\)\))\)\) \[Rule] \
a\_1, \ \(-\((\(\(h\_3\) \((h\_4 + h\_5)\)\)\/\(2 \((h\_3\^2 + \
\[Beta]\ \[Omega]\^2)\)\))\)\) \[Rule] \
a\_2, \(-\((h\_3\/\(2 \((h\_3\^2 + \[Beta]\ \[Omega]\^2)\)\))\)\) \
\[Rule] \ a\_3}\)], "Input"],
Cell[BoxData[
\(\[IndentingNewLine]\)], "Input"],
Cell[BoxData[
\(d := \((\[Phi]\_1\ \((\(-4\)\ \[Delta]\^2\ \[CurlyEpsilon]\_3 -
8\ \[Delta]\^2\ \[Xi]\ \[CurlyEpsilon]\_3 -
16\ \[Delta]\^2\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_3 -
8\ \[Delta]\^2\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_3 -
4\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_3 -
4\ \[Gamma]\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_3 -
8\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_3 -
8\ \[Gamma]\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_3 -
16\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_3 -
16\ \[Gamma]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_3 -
8\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_3 -
8\ \[Gamma]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_3 - \[Omega]\^2\ \[CurlyEpsilon]\_3 -
2\ \[Gamma]\ \[Omega]\^2\ \[CurlyEpsilon]\_3 - \[Gamma]\^2\ \
\[Omega]\^2\ \[CurlyEpsilon]\_3 -
8\ \[Delta]\^2\ \[Theta]\ \[Omega]\^2\ \[CurlyEpsilon]\_3 -
8\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_3 -
8\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_3 -
8\ \[Gamma]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_3 -
8\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_3 - 8\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\_3 -
8\ \[Gamma]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\
\_3 - 8\ \[Gamma]\ \[Theta]\ \[Omega]\^4\ \[CurlyEpsilon]\_3 +
4\ \[Delta]\^2\ \[CurlyEpsilon]\_4 -
4\ \[Gamma]\ \[Delta]\^2\ \[CurlyEpsilon]\_4 +
8\ \[Delta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 -
8\ \[Gamma]\ \[Delta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 +
16\ \[Delta]\^2\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4 -
16\ \[Gamma]\ \[Delta]\^2\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4 \
+ 8\ \[Delta]\^2\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 -
8\ \[Gamma]\ \[Delta]\^2\ \[Eta]\^2\ \[Xi]\ \
\[CurlyEpsilon]\_4 + 4\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_4 -
4\ \[Gamma]\^2\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_4 +
8\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_4 -
8\ \[Gamma]\^2\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_4 \
+ 16\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_4 -
16\ \[Gamma]\^2\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_4 +
8\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_4 -
8\ \[Gamma]\^2\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_4 + \[Omega]\^2\ \[CurlyEpsilon]\_4 + \[Gamma]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4 - \[Gamma]\^2\ \[Omega]\^2\ \[CurlyEpsilon]\_4 - \
\[Gamma]\^3\ \[Omega]\^2\ \[CurlyEpsilon]\_4 +
4\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_4 -
4\ \[Gamma]\^3\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_4 +
8\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_4 -
8\ \[Gamma]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4 +
4\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4 -
4\ \[Gamma]\^3\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4 + 4\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\_4 -
8\ \[Gamma]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\
\_4 + 4\ \[Gamma]\^2\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\_4 -
4\ e\ \[Delta]\^2\ \[Phi]\_1 -
8\ e\ \[Delta]\^2\ \[Xi]\ \[Phi]\_1 -
16\ e\ \[Delta]\^2\ \[Eta]\ \[Xi]\ \[Phi]\_1 -
8\ e\ \[Delta]\^2\ \[Eta]\^2\ \[Xi]\ \[Phi]\_1 -
4\ e\ \[Delta]\ \[Omega]\ \[Phi]\_1 -
4\ e\ \[Gamma]\ \[Delta]\ \[Omega]\ \[Phi]\_1 -
8\ e\ \[Delta]\ \[Xi]\ \[Omega]\ \[Phi]\_1 -
8\ e\ \[Gamma]\ \[Delta]\ \[Xi]\ \[Omega]\ \[Phi]\_1 -
16\ e\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[Phi]\_1 -
16\ e\ \[Gamma]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[Phi]\_1 \
- 8\ e\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[Phi]\_1 -
8\ e\ \[Gamma]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \
\[Phi]\_1 - e\ \[Omega]\^2\ \[Phi]\_1 -
2\ e\ \[Gamma]\ \[Omega]\^2\ \[Phi]\_1 -
e\ \[Gamma]\^2\ \[Omega]\^2\ \[Phi]\_1 -
8\ e\ \[Delta]\^2\ \[Theta]\ \[Omega]\^2\ \[Phi]\_1 -
8\ e\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1 -
8\ e\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1 -
8\ e\ \[Gamma]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1 -
8\ e\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1 -
8\ e\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[Phi]\_1 -
8\ e\ \[Gamma]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[Phi]\_1 -
8\ e\ \[Gamma]\ \[Theta]\ \[Omega]\^4\ \[Phi]\_1 -
4\ \[Alpha]\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_3\ \
\[Phi]\_1 -
8\ \[Alpha]\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_3\ \
\[Phi]\_1 -
16\ \[Alpha]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_3\ \[Phi]\_1 -
8\ \[Alpha]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_3\ \[Phi]\_1 -
2\ \[Alpha]\ \[Omega]\^2\ \[CurlyEpsilon]\_3\ \[Phi]\_1 -
2\ \[Alpha]\ \[Gamma]\ \[Omega]\^2\ \[CurlyEpsilon]\_3\ \
\[Phi]\_1 -
8\ \[Alpha]\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_3\
\ \[Phi]\_1 -
16\ \[Alpha]\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_3\ \
\[Phi]\_1 -
8\ \[Alpha]\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_3\ \[Phi]\_1 -
8\ \[Alpha]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\
\_3\ \[Phi]\_1 -
8\ \[Alpha]\ \[Gamma]\ \[Theta]\ \[Omega]\^4\ \[CurlyEpsilon]\
\_3\ \[Phi]\_1 + 4\ \[Alpha]\ \[Delta]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1 +
8\ \[Alpha]\ \[Delta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1 +
16\ \[Alpha]\ \[Delta]\^2\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1 +
8\ \[Alpha]\ \[Delta]\^2\ \[Eta]\^2\ \[Xi]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 +
8\ \[Alpha]\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1 +
16\ \[Alpha]\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1 +
32\ \[Alpha]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 +
16\ \[Alpha]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 +
3\ \[Alpha]\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1 +
2\ \[Alpha]\ \[Gamma]\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1 - \[Alpha]\ \[Gamma]\^2\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1 \
+ 8\ \[Alpha]\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1 +
24\ \[Alpha]\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1 -
8\ \[Alpha]\ \[Gamma]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 +
8\ \[Alpha]\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 +
8\ \[Alpha]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[CurlyEpsilon]\
\_4\ \[Phi]\_1 -
8\ \[Alpha]\ \[Gamma]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 -
4\ e\ \[Alpha]\ \[Delta]\ \[Omega]\ \[Phi]\_1\%2 -
8\ e\ \[Alpha]\ \[Delta]\ \[Xi]\ \[Omega]\ \[Phi]\_1\%2 -
16\ e\ \[Alpha]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[Phi]\_1\
\%2 - 8\ e\ \[Alpha]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[Phi]\_1\%2 -
2\ e\ \[Alpha]\ \[Omega]\^2\ \[Phi]\_1\%2 -
2\ e\ \[Alpha]\ \[Gamma]\ \[Omega]\^2\ \[Phi]\_1\%2 -
8\ e\ \[Alpha]\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\%2 -
16\ e\ \[Alpha]\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\%2 -
8\ e\ \[Alpha]\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[Phi]\_1\%2 -
8\ e\ \[Alpha]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[Phi]\_1\%2 \
- 8\ e\ \[Alpha]\ \[Gamma]\ \[Theta]\ \[Omega]\^4\ \[Phi]\_1\%2 - \[Alpha]\^2\
\ \[Omega]\^2\ \[CurlyEpsilon]\_3\ \[Phi]\_1\%2 -
8\ \[Alpha]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_3\ \[Phi]\_1\%2 +
4\ \[Alpha]\^2\ \[Delta]\ \[Omega]\ \[CurlyEpsilon]\_4\ \
\[Phi]\_1\%2 +
8\ \[Alpha]\^2\ \[Delta]\ \[Xi]\ \[Omega]\ \[CurlyEpsilon]\_4\
\ \[Phi]\_1\%2 +
16\ \[Alpha]\^2\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1\%2 +
8\ \[Alpha]\^2\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1\%2 +
3\ \[Alpha]\^2\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1\%2 \
+ \[Alpha]\^2\ \[Gamma]\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1\%2 +
4\ \[Alpha]\^2\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[CurlyEpsilon]\
\_4\ \[Phi]\_1\%2 +
24\ \[Alpha]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1\%2 +
4\ \[Alpha]\^2\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1\%2 +
4\ \[Alpha]\^2\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1\%2 -
e\ \[Alpha]\^2\ \[Omega]\^2\ \[Phi]\_1\%3 -
8\ e\ \[Alpha]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\%3 + \
\[Alpha]\^3\ \[Omega]\^2\ \[CurlyEpsilon]\_4\ \[Phi]\_1\%3 +
8\ \[Alpha]\^3\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1\%3 - \[CurlyEpsilon]\_2\ \((\(-1\) + \[Gamma] - \
\[Alpha]\ \[Phi]\_1)\)\ \((4\ \[Delta]\^2\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi])\) + \((1 + \
\[Gamma])\)\ \((1 + \[Gamma] + 8\ \[Gamma]\ \[Eta]\ \[Xi] +
4\ \((1 + \[Eta]\^2)\)\ \[Xi])\)\ \[Omega]\^2 +
4\ \[Delta]\ \[Omega]\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] - \[Theta]\ \
\[Omega]\^2 + \[Gamma]\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] + \[Theta]\ \
\[Omega]\^2)\))\) + 2\ \[Alpha]\ \[Omega]\ \((\((1 +
4\ \((1 + \[Eta]\^2)\)\ \[Xi] + \[Gamma]\ \
\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi])\))\)\ \[Omega] + \[Delta]\ \((2 +
4\ \((1 + \[Eta])\)\^2\ \[Xi] -
2\ \[Theta]\ \[Omega]\^2)\))\)\ \[Phi]\_1 + \
\[Alpha]\^2\ \((1 +
4\ \((1 + \[Eta]\^2)\)\ \[Xi])\)\ \[Omega]\^2\ \
\[Phi]\_1\%2)\) - \[CurlyEpsilon]\_1\ \((4\ \[Delta]\^2\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] +
2\ \[Theta]\ \[Omega]\^2)\) +
4\ \((1 + \[Gamma])\)\ \[Delta]\ \[Omega]\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] +
2\ \[Theta]\ \[Omega]\^2)\) + \[Omega]\^2\ \((1 +
4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
2\ \[Gamma]\ \((1 + 8\ \[Eta]\ \[Xi])\) +
4\ \[Theta]\ \[Omega]\^2 + \[Gamma]\^2\ \((1 +
4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
4\ \[Theta]\ \[Omega]\^2)\))\) +
2\ \[Alpha]\ \[Omega]\ \((\[Delta]\ \((2 +
4\ \((1 + \[Eta])\)\^2\ \[Xi] +
4\ \[Theta]\ \[Omega]\^2)\) + \[Omega]\ \
\((1 + \[Gamma] + 8\ \[Gamma]\ \[Eta]\ \[Xi] +
4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
4\ \[Theta]\ \[Omega]\^2)\))\)\ \[Phi]\_1 + \
\[Alpha]\^2\ \[Omega]\^2\ \((1 + 4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
4\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_1\%2)\) +
8\ i\ \[Delta]\^2\ \[Phi]\_2 +
16\ i\ \[Delta]\^2\ \[Xi]\ \[Phi]\_2 +
32\ i\ \[Delta]\^2\ \[Eta]\ \[Xi]\ \[Phi]\_2 +
16\ i\ \[Delta]\^2\ \[Eta]\^2\ \[Xi]\ \[Phi]\_2 +
8\ i\ \[Delta]\ \[Omega]\ \[Phi]\_2 +
8\ i\ \[Gamma]\ \[Delta]\ \[Omega]\ \[Phi]\_2 +
16\ i\ \[Delta]\ \[Xi]\ \[Omega]\ \[Phi]\_2 +
16\ i\ \[Gamma]\ \[Delta]\ \[Xi]\ \[Omega]\ \[Phi]\_2 +
32\ i\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[Phi]\_2 +
32\ i\ \[Gamma]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[Phi]\_2 \
+ 16\ i\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[Phi]\_2 +
16\ i\ \[Gamma]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[Phi]\
\_2 + 2\ i\ \[Omega]\^2\ \[Phi]\_2 + 4\ i\ \[Gamma]\ \[Omega]\^2\ \[Phi]\_2 +
2\ i\ \[Gamma]\^2\ \[Omega]\^2\ \[Phi]\_2 +
16\ i\ \[Delta]\^2\ \[Theta]\ \[Omega]\^2\ \[Phi]\_2 +
4\ i\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
8\ i\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
4\ i\ \[Gamma]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
8\ i\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
16\ i\ \[Gamma]\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
8\ i\ \[Gamma]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
4\ i\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
8\ i\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
4\ i\ \[Gamma]\^2\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_2 +
16\ i\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[Phi]\_2 +
16\ i\ \[Gamma]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[Phi]\_2 +
4\ i\ \[Theta]\ \[Omega]\^4\ \[Phi]\_2 +
8\ i\ \[Gamma]\ \[Theta]\ \[Omega]\^4\ \[Phi]\_2 +
4\ i\ \[Gamma]\^2\ \[Theta]\ \[Omega]\^4\ \[Phi]\_2 +
8\ i\ \[Alpha]\ \[Delta]\ \[Omega]\ \[Phi]\_1\ \[Phi]\_2 +
16\ i\ \[Alpha]\ \[Delta]\ \[Xi]\ \[Omega]\ \[Phi]\_1\ \[Phi]\
\_2 + 32\ i\ \[Alpha]\ \[Delta]\ \[Eta]\ \[Xi]\ \[Omega]\ \[Phi]\_1\ \
\[Phi]\_2 +
16\ i\ \[Alpha]\ \[Delta]\ \[Eta]\^2\ \[Xi]\ \[Omega]\ \[Phi]\
\_1\ \[Phi]\_2 + 4\ i\ \[Alpha]\ \[Omega]\^2\ \[Phi]\_1\ \[Phi]\_2 +
4\ i\ \[Alpha]\ \[Gamma]\ \[Omega]\^2\ \[Phi]\_1\ \[Phi]\_2 +
8\ i\ \[Alpha]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\ \[Phi]\_2 +
8\ i\ \[Alpha]\ \[Gamma]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\ \
\[Phi]\_2 +
16\ i\ \[Alpha]\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\ \
\[Phi]\_2 +
16\ i\ \[Alpha]\ \[Gamma]\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\
\_1\ \[Phi]\_2 +
8\ i\ \[Alpha]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\ \
\[Phi]\_2 +
8\ i\ \[Alpha]\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[Phi]\_1\ \[Phi]\_2 +
16\ i\ \[Alpha]\ \[Delta]\ \[Theta]\ \[Omega]\^3\ \[Phi]\_1\ \
\[Phi]\_2 + 8\ i\ \[Alpha]\ \[Theta]\ \[Omega]\^4\ \[Phi]\_1\ \[Phi]\_2 +
8\ i\ \[Alpha]\ \[Gamma]\ \[Theta]\ \[Omega]\^4\ \[Phi]\_1\ \
\[Phi]\_2 + 2\ i\ \[Alpha]\^2\ \[Omega]\^2\ \[Phi]\_1\%2\ \[Phi]\_2 +
4\ i\ \[Alpha]\^2\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\%2\ \
\[Phi]\_2 +
8\ i\ \[Alpha]\^2\ \[Eta]\ \[Xi]\ \[Omega]\^2\ \[Phi]\_1\%2\ \
\[Phi]\_2 +
4\ i\ \[Alpha]\^2\ \[Eta]\^2\ \[Xi]\ \[Omega]\^2\ \
\[Phi]\_1\%2\ \[Phi]\_2 +
4\ i\ \[Alpha]\^2\ \[Theta]\ \[Omega]\^4\ \[Phi]\_1\%2\ \
\[Phi]\_2)\))\)/\((4\ \((\(-1\) + \[Gamma])\)\^2\ \[Omega]\^2\ \((2\ \[Delta] \
+ \[Omega] + \[Gamma]\ \[Omega])\)\^2 -
16\ \[Alpha]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \((\[Delta] + \
\[Omega])\)\ \((2\ \[Delta] + \[Omega] + \[Gamma]\ \[Omega])\)\ \[Phi]\_1 + \
\((4\ \[Delta]\^2\ \((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] +
4\ \[Alpha]\^2\ \[Omega]\^2 +
2\ \[Theta]\ \[Omega]\^2)\) +
4\ \[Delta]\ \[Omega]\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] +
12\ \[Alpha]\^2\ \[Omega]\^2 +
2\ \[Theta]\ \[Omega]\^2 + \[Gamma]\ \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] -
4\ \[Alpha]\^2\ \[Omega]\^2 +
2\ \[Theta]\ \[Omega]\^2)\))\) + \[Omega]\^2\ \
\((1 + 4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
2\ \[Gamma]\ \((1 + 8\ \[Eta]\ \[Xi])\) +
24\ \[Alpha]\^2\ \[Omega]\^2 +
4\ \[Theta]\ \[Omega]\^2 + \[Gamma]\^2\ \((1 +
4\ \((1 + \[Eta]\^2)\)\ \[Xi] -
8\ \[Alpha]\^2\ \[Omega]\^2 +
4\ \[Theta]\ \[Omega]\^2)\))\))\)\ \[Phi]\_1\%2 \
+ 2\ \[Alpha]\ \[Omega]\ \((\[Delta]\ \((2 + 4\ \((1 + \[Eta])\)\^2\ \[Xi] +
8\ \[Alpha]\^2\ \[Omega]\^2 +
4\ \[Theta]\ \[Omega]\^2)\) + \[Omega]\ \((1 + \
\[Gamma] + 8\ \[Gamma]\ \[Eta]\ \[Xi] + 4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
8\ \[Alpha]\^2\ \[Omega]\^2 +
4\ \[Theta]\ \[Omega]\^2)\))\)\ \[Phi]\_1\%3 + \
\[Alpha]\^2\ \[Omega]\^2\ \((1 + 4\ \((1 + \[Eta]\^2)\)\ \[Xi] +
4\ \[Alpha]\^2\ \[Omega]\^2 +
4\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_1\%4)\)\)], "Input"],
Cell[BoxData[
\(i := \((\((\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] +
2\ \[Theta]\ \[Omega]\^2)\)\ \[CurlyEpsilon]\_1 + \
\[CurlyEpsilon]\_3 + 2\ \[Xi]\ \[CurlyEpsilon]\_3 +
4\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_3 +
2\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_3 +
2\ \[Theta]\ \[Omega]\^2\ \[CurlyEpsilon]\_3 - \
\[CurlyEpsilon]\_4 + \[Gamma]\ \[CurlyEpsilon]\_4 -
2\ \[Xi]\ \[CurlyEpsilon]\_4 +
2\ \[Gamma]\ \[Xi]\ \[CurlyEpsilon]\_4 -
4\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4 +
4\ \[Gamma]\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4 -
2\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 +
2\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 +
d\ \[Phi]\_1 + e\ \[Phi]\_1 + 2\ d\ \[Xi]\ \[Phi]\_1 +
2\ e\ \[Xi]\ \[Phi]\_1 + 4\ d\ \[Eta]\ \[Xi]\ \[Phi]\_1 +
4\ e\ \[Eta]\ \[Xi]\ \[Phi]\_1 +
2\ d\ \[Eta]\^2\ \[Xi]\ \[Phi]\_1 +
2\ e\ \[Eta]\^2\ \[Xi]\ \[Phi]\_1 +
2\ d\ \[Theta]\ \[Omega]\^2\ \[Phi]\_1 +
2\ e\ \[Theta]\ \[Omega]\^2\ \[Phi]\_1 - \[Alpha]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 -
2\ \[Alpha]\ \[Xi]\ \[CurlyEpsilon]\_4\ \[Phi]\_1 -
4\ \[Alpha]\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4\ \[Phi]\_1 -
2\ \[Alpha]\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4\ \[Phi]\_1 \
+ \((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi])\)\ \[CurlyEpsilon]\_2\ \((\(-1\) + \
\[Gamma] - \[Alpha]\ \[Phi]\_1)\))\)\ \[Phi]\_2)\)/\((2\ \((\[Beta]\ \
\((\(-1\) + \[Gamma])\)\^2\ \[Omega]\^2 -
2\ \[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \
\[Phi]\_1 + \[Alpha]\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] +
2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\))\)\)], \
"Input"],
Cell[BoxData[
\(\[IndentingNewLine]\)], "Input"],
Cell[BoxData[
StyleBox[\(L\[ODoubleDot]sungsversuch\ mit\ Hilfe\ von\ Collect\ \
\(\(scheitert\)\(:\)\)\),
"Subsubtitle"]], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(Collect[\((\((\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] +
2\ \[Theta]\ \[Omega]\^2)\)\ \[CurlyEpsilon]\_1 + \
\[CurlyEpsilon]\_3 + 2\ \[Xi]\ \[CurlyEpsilon]\_3 +
4\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_3 +
2\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_3 +
2\ \[Theta]\ \[Omega]\^2\ \[CurlyEpsilon]\_3 - \
\[CurlyEpsilon]\_4 + \[Gamma]\ \[CurlyEpsilon]\_4 -
2\ \[Xi]\ \[CurlyEpsilon]\_4 +
2\ \[Gamma]\ \[Xi]\ \[CurlyEpsilon]\_4 -
4\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4 +
4\ \[Gamma]\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4 -
2\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 +
2\ \[Gamma]\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4 +
d\ \[Phi]\_1 + e\ \[Phi]\_1 + 2\ d\ \[Xi]\ \[Phi]\_1 +
2\ e\ \[Xi]\ \[Phi]\_1 + 4\ d\ \[Eta]\ \[Xi]\ \[Phi]\_1 +
4\ e\ \[Eta]\ \[Xi]\ \[Phi]\_1 +
2\ d\ \[Eta]\^2\ \[Xi]\ \[Phi]\_1 +
2\ e\ \[Eta]\^2\ \[Xi]\ \[Phi]\_1 +
2\ d\ \[Theta]\ \[Omega]\^2\ \[Phi]\_1 +
2\ e\ \[Theta]\ \[Omega]\^2\ \[Phi]\_1 - \[Alpha]\ \
\[CurlyEpsilon]\_4\ \[Phi]\_1 -
2\ \[Alpha]\ \[Xi]\ \[CurlyEpsilon]\_4\ \[Phi]\_1 -
4\ \[Alpha]\ \[Eta]\ \[Xi]\ \[CurlyEpsilon]\_4\ \[Phi]\_1 -
2\ \[Alpha]\ \[Eta]\^2\ \[Xi]\ \[CurlyEpsilon]\_4\ \[Phi]\_1 \
+ \((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi])\)\ \[CurlyEpsilon]\_2\ \((\(-1\) + \
\[Gamma] - \[Alpha]\ \[Phi]\_1)\))\)\ \[Phi]\_2)\)/\((2\ \((\[Beta]\ \
\((\(-1\) + \[Gamma])\)\^2\ \[Omega]\^2 -
2\ \[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \
\[Phi]\_1 + \[Alpha]\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 +
2\ \((1 + \[Eta])\)\^2\ \[Xi] +
2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\))\), {e, \
d, \ \[CurlyEpsilon]\_1, \ \[CurlyEpsilon]\_2, \ \[CurlyEpsilon]\_3, \
\ \[CurlyEpsilon]\_4}, Simplify]\)], "Input"],
Cell[BoxData[
\(\(\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \
\[CurlyEpsilon]\_1\ \[Phi]\_2\)\/\(2\ \((\[Beta]\ \((\(-1\) + \[Gamma])\)\^2\ \
\[Omega]\^2 - 2\ \[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \
\[Phi]\_1 + \[Alpha]\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 + 2\ \((1 \
+ \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\)\) + \
\(\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \
\[CurlyEpsilon]\_3\ \[Phi]\_2\)\/\(2\ \((\[Beta]\ \((\(-1\) + \[Gamma])\)\^2\ \
\[Omega]\^2 - 2\ \[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \
\[Phi]\_1 + \[Alpha]\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 + 2\ \((1 \
+ \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\)\) + \(d\ \
\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_1\
\ \[Phi]\_2\)\/\(2\ \((\[Beta]\ \((\(-1\) + \[Gamma])\)\^2\ \[Omega]\^2 - 2\ \
\[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \[Phi]\_1 + \[Alpha]\
\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 + 2\ \((1 + \[Eta])\)\^2\ \
\[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\)\) + \(e\ \((1 + 2\ \((1 \
+ \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_1\ \[Phi]\_2\)\/\
\(2\ \((\[Beta]\ \((\(-1\) + \[Gamma])\)\^2\ \[Omega]\^2 - 2\ \[Alpha]\ \
\[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \[Phi]\_1 + \[Alpha]\^2\ \
\[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] + 2\
\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\)\) + \(\((1 + 2\ \((1 + \
\[Eta])\)\^2\ \[Xi])\)\ \[CurlyEpsilon]\_2\ \((\(-1\) + \[Gamma] - \[Alpha]\ \
\[Phi]\_1)\)\ \[Phi]\_2\)\/\(2\ \((\[Beta]\ \((\(-1\) + \[Gamma])\)\^2\ \
\[Omega]\^2 - 2\ \[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \[Omega]\^2\ \
\[Phi]\_1 + \[Alpha]\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \((1 + 2\ \((1 \
+ \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\%2)\)\) + \
\(\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi])\)\ \[CurlyEpsilon]\_4\ \((\(-1\) + \
\[Gamma] - \[Alpha]\ \[Phi]\_1)\)\ \[Phi]\_2\)\/\(2\ \((\[Beta]\ \((\(-1\) + \
\[Gamma])\)\^2\ \[Omega]\^2 - 2\ \[Alpha]\ \[Beta]\ \((\(-1\) + \[Gamma])\)\ \
\[Omega]\^2\ \[Phi]\_1 + \[Alpha]\^2\ \[Beta]\ \[Omega]\^2\ \[Phi]\_1\%2 + \
\((1 + 2\ \((1 + \[Eta])\)\^2\ \[Xi] + 2\ \[Theta]\ \[Omega]\^2)\)\ \[Phi]\_2\
\%2)\)\)\)], "Output"]
}, Open ]],
Cell[BoxData[
\(\[IndentingNewLine]\)], "Input"]
},
FrontEndVersion->"5.0 for Microsoft Windows",
ScreenRectangle->{{0, 1400}, {0, 975}},
WindowSize->{691, 947},
WindowMargins->{{0, Automatic}, {0, Automatic}},
PrintingCopies->1,
PrintingPageRange->{Automatic, Automatic}
]
(*******************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of the file. The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1754, 51, 128, 2, 30, "Input"],
Cell[1885, 55, 1309, 20, 188, "Input"],
Cell[3197, 77, 414, 8, 70, "Input"],
Cell[3614, 87, 341, 6, 44, "Input"],
Cell[3958, 95, 52, 1, 50, "Input"],
Cell[4013, 98, 17741, 289, 1027, "Input"],
Cell[21757, 389, 1953, 32, 133, "Input"],
Cell[23713, 423, 52, 1, 50, "Input"],
Cell[23768, 426, 142, 3, 33, "Input"],
Cell[CellGroupData[{
Cell[23935, 433, 2074, 33, 155, "Input"],
Cell[26012, 468, 2351, 31, 259, "Output"]
}, Open ]],
Cell[28378, 502, 52, 1, 50, "Input"]
}
]
*)
(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)