Hallo Frank und Stefan,
das kann am Ausdruck liegen, denn:
Allenfalls noch zu tippen
In[7]:= FullSimplify[d^3/Abs[d], Assumptions -> d != 0]
Out[7]= d^2 Sign[d]
In[10]:= FullSimplify[d^3/Abs[d], Assumptions -> d < 0 || d > 0]
Out[10]= d Abs[d]
In[16]:= Refine[d^3/Abs[d], Assumptions -> d > 0 || d < 0]
Out[16]= d^3/Abs[d]
In[24]:= Refine[d^3/Abs[d], Assumptions -> d != 0]
Out[24]= d^3/Abs[d]
und letzteres veranlasst zu einer Eselsbrueckenfunktion
In[33]:= Remove[richterRefine]
richterRefine[f_, a_] := If[FreeQ[a, Unequal], Refine[f, a],
If[Head[a] == Unequal,
{{#, Refine[f, Assumptions -> #]} &[
Less[First[Apply[List, a]] , Last[Apply[List, a]]]],
{#, Refine[f, Assumptions -> #]} &[
Greater[First[Apply[List, a]] , Last[Apply[List, a]]]]},
Refine[f, a]
]
]
In[35]:= richterRefine[d^3/Abs[d], d != 0]
Out[35]= {{d < 0, -d^2}, {d > 0, d^2}}
In[38]:= richterRefine[d^3/Abs[d], 0 != d]
Out[38]= {{0 < d, d^2}, {0 > d, -d^2}}
In[39]:= richterRefine[(x - y)^3/Abs[x - y], x != y]
Out[39]= {{x < y, (x - y)^3/(-x + y)}, {x > y, (x - y)^2}}
In[40]:= richterRefine[d^3/Abs[d], d < 0 || d > 0]
Out[40]= d^3/Abs[d]
Gruss && Schönen Sonntag
Udo.