DMUG-Archiv 2018

Frühere   Chronologischer Index   Spätere
Vorherige   Thematischer Index   Nächste

Re: [Dmug] knot theory package

Hello Stephan,

this still loads into Mathematica

In[6]:= SetDirectory[FileNameJoin[{NotebookDirectory[], "test", "others"}]]
Out[6]= "N:\\Udo\\Abt_N\\test\\others"

In[7]:= << KnotTheory`
During evaluation of In[7]:= Loading KnotTheory` version of September 6, 2014, 13:37:37.2841.
Read more at http://katlas.org/wiki/KnotTheory.

In[8]:= $Version
Out[8]= "10.4.1 for Microsoft Windows (64-bit) (April 11, 2016)"

I read a bit around on http://katlas.org/wiki/Setup and it says

-----------------------------------------------------------------------
Notes

Precomputed Data

KnotTheory` comes with a certain amount of precomputed data which is loaded "on demand" just when it is needed. When a precomputed data file is read by KnotTheory`, a notification message is displayed. To prevent these messages from appearing execute the command Off[KnotTheory::loading].

Further Data Files

To access the Hoste-Thistlethwaite enumeration of knots with 12 to 16 crossings (see Naming and Enumeration), also download either the file DTCodes4Knots12To16.tar.gz or the file DTCodes4Knots12To16.zip (about 9MB each), and unpack either one into the directory KnotTheory/.
-----------------------------------------------------------------------

seemingly there are data collections with 12 to 16 crossing given. Have you inspected them,
where did you run into problems, what did you try already?


Have you seen

http://reference.wolfram.com/language/ref/KnotData.html
http://reference.wolfram.com/language/note/KnotDataSourceInformation.html
http://reference.wolfram.com/language/ref/interpreter/ComputedKnot.html

before running up a steep learning curve for love it would be good to have a specific point to start with.

Best regards
Udo.

On Mon, 16 Jul 2018 13:21:33 +0200, Stephan Rosebrock via demug <demug@XXXXXXX.ch> wrote:

Dear All,

How can I write a Mathematica file which uses the Mathematica package "knottheory" and creates a list of many (as many as possible) different non-alternating knots and links (rather minimal knot- and linkprojections) with at least 12 crossings (better: 16 or 18 crossings or even more) which satisfy: Each component of a link has as many positive crossings as negative crossings.

Best regards,
Stephan Rosebrock
  *********************************************************
Dr. Stephan Rosebrock

Paedagogische Hochschule Karlsruhe
Bismarckstr. 10
76133 Karlsruhe
Deutschland / Germany

e-mail:    rosebrock@XXXXXXX.de
Homepage:  http://www.rosebrock.ph-karlsruhe.de/
Tel:  0721-925-4275
Fax:  0721-925-4249
*********************************************************
_______________________________________________
DMUG Deutschsprachiges Mathematica-Forum demug@XXXXXXX.ch
http://www.mathematica.ch/mailman/listinfo/demug
Archiv: http://www.mathematica.ch/archiv.html
_______________________________________________
DMUG Deutschsprachiges Mathematica-Forum demug@XXXXXXX.ch
http://www.mathematica.ch/mailman/listinfo/demug
Archiv: http://www.mathematica.ch/archiv.html

Antworten:
Verweise:
Frühere   Chronologischer Index   Spätere
Vorherige   Thematischer Index   Nächste

DMUG DMUG-Archiv, http://www.mathematica.ch/archiv.html