Siehe Notebook.
On 5/22/22 10:49 AM, Peter Klamser via demug wrote:
Sie Notebook...
Eine schönen restsonntag wünscht Peter
_______________________________________________
DMUG Deutschsprachiges Mathematica-Forum demug@XXXXXXX.ch
http://www.mathematica.ch/mailman/listinfo/demug
Archiv: http://www.mathematica.ch/archiv.html
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 66023, 1797]
NotebookOptionsPosition[ 58969, 1675]
NotebookOutlinePosition[ 59424, 1693]
CellTagsIndexPosition[ 59381, 1690]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
Diese Formel (and eine ganze Reihe \[ADoubleDot]hnlicher) geht auf Achim \
Kempf\[CloseCurlyQuote]s et al arxiv preprint \
https://arxiv.org/abs/1507.04348 zurueck. \
\>", "Text",
CellChangeTimes->{{3.862240091226514*^9, 3.862240133666504*^9}, {
3.862240200007494*^9, 3.862240212028707*^9}, {3.862247331676572*^9,
3.8622473329223757`*^9}},ExpressionUUID->"049e1728-6fd8-4382-85d2-\
48d6b171e0cb"],
Cell["In", "Text",
CellChangeTimes->{{3.862240242577845*^9,
3.862240245656033*^9}},ExpressionUUID->"42ce3df5-4154-4a83-a056-\
8218bd54ef55"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztndtrG9kdx9P2pY/9F/o/zEPnYUgrg0SIIvCNIIzXVRxnY4c4wVbIbuKa
1mvjxMQiBbNWi1k9eLfqYrqsumSNG0NNEhvjgBenwbsOOGad4E12Ea3A3kXo
IZ05F908ks5cNJpRvh/YJRqPNGdmzvmd3/ndzq/PXWm78PMTJ04M/1L9X1vk
+u+GhiLvt/9K/dA5ONz/7mDf+VOD0b53+4Z+c+4X6sF31P/++rMTJ7R/vwEA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAC5mbfps11m/LEmDqUyj2wIAAJZ4OnNGkrrmdnONbggAXuHFwnBXV0iR
pDN3tzBw3MOL+R68EwCMcnhvSJLkG8vZRjcE5ME7AcAMj8ZgoHEb5J2cDHR0
Dw6fCwavLmDBCYyTWY9FQv2fPDf/C9nM9xmBGfXHzZnfh6Nu6KUw0LgP8k7k
nrmdLFPTzsw8bXSbgLfIrIwF5cC1ewcmBzbpdyqKokhSy9Tj6mfndhM9stI7
32AxQgw0Uksw3Hf9SqcvHFt3t46WO1iODXR0XFBVls73pqfHP/z3q0Y3yQy5
g7XESCQUCkVGkpvp8h7ww0K/+kom1+nxlVH1BXUl9hxvJPAsRLjIPQkrwkXV
y77f/3SQiLQby7V/KLMyGpCcFGi59HYqNhAOESIffc0lcGB0WRtSRCUYunfo
UGtqkN1/QEe8SviP939QD71ajAakwOTqkdrYb+JtXh3le8leRXvoK+mDxfdO
SYGpxyUdgL6T60tUxd+dOyvBEgAMQOSKPHTPepehnU/qX/hB5GwiQ4915/qQ
WZ/qVOX1zMbropXw46kWSTqfpArOXqJLbfroSv3bUovc7sJlVW5dSz0/KjyZ
Vwv9RRY+z3r96G3I1xYPqUA+pseTd8LFNNHTpLaZp567T9AQqEhpubFsw/RH
O58BOweTZ6MrdZ57c+uTLWQZ7KfaDjUOEm3sbHyHDJXc8g3JHQLiVfK81lbZ
d5q0tf3Wgx+5MsYlr1e9fuw9kHUkl2Zt8W+KTyEuAKbbHy5ekyW5P/my4e8E
eIHc7pyqkdiil3GBIMljjxrUgIpQvatswUJkrzy6QocK0Qnq3Q4hiKmoTKzS
eYJL3lKl0jsQ6ZTXxtSV/8P7D7fLDGfkHPKmslt327gZAIBa5J7OqPOj3L9g
z7AgY8yw7Sn3eCpQbzlChUGZNY+s1s7O7ZIPRFMITK67QNshj5G3i0HdFfwG
yIJelXe7yUs3F//bkEaagTmK8hOIPrmD5Ymwr/PCQDgcTZQYBgCoDF3SmLdK
5I6eL8UGwn6/z+fzRyYStzQFSOqZf2Hwd+iU3TK6YoMFnlnP/YRQZGKZ+mgz
94Zk6dSdTbqoTG9vHzBT+qm7W9qB1JDMYgIcpEJb6Rwz8I80O+nJswyTtkRl
oatzTbS9TJ73kkmJe71d42kBzcPhyqiVtVVmK059U2QlQBwJkjGjWRHUhmJ1
aGbWY2FFkoPvp/Y1sUQXsdwsk9v9YiTibz13c7ivvW8kuZUh95C4GgyeG4io
omSp2ORef6q2Vf3r7ECHP3zl5mB390CMSDn1eV/0Bd65MhCOTKRSsW5fINja
MeahZVhuZVQTwuVaJwDWoQIkH9djkL15oh8UxZ0yd2aNZUQlqJqoubrMtEbj
8NFEUC6TzsRc5gYvZRleaqttMDtEzVBEAAzCnEtl/iRRmDW3RPgQB6FwcEal
nzQbQUWNb2U3RESk2QbVDy+11T5Y/8A6E9gNjfox6xXjvvXijknN1BbiOYud
94ZhspAtc3NH6f0n/4pfdjY4VxQvtdU+WP9AlhKwGxbRZFKY8Y5ZrEkwC6+V
ZQQTZ6aWqiRIqRCiFYoMj4/P/n1j31ar/nfJXkkU5dJn3zWyrW6DewCEskQA
EIdGX5nWo0g8VNksy4wilvoqMxObMJ6xG/LEUPFSW+2DiXATDm8AqsHGk2nf
EpNmxcOxyGimLaQCsa/M/LBYPJIOlpe5DuKlttoGN5oZCqwGoCYs/cj8opCN
x4L/jYdnaNqapmCZdZSabxodLcdsMpmtmR5f1GXxpV5qq02w99rcbg7QALgF
w8JKh4SiSi0frGa1wNPVqU5FUWSq7Wl/spBGzuZw46bizOK1QvDbG62gx7Ol
ibCihGOrrovI8lJbbYFlvLkkOiO7k+hVAhNrPxn83otkrxI0HOAnWPEPmINZ
MKzFMGZ3Ph+J+BVFC2KPTCztZ7VCj35FlhXfRSueOd7vTZhXcgdr8WhYa1Oo
vb09FBmeTT1xa1qMl9pqA8yo6pBqps6vWuixT/H5I8cK1tHSV0MpU9MGWYOI
l0gwVvHPUYixSPad9isutHlQ4eJXfL6OWhVdWZCrW+M0304beXPDfeCOjGie
9TtDMlXKLkn+aCUjmCSdyT3ze0JnG6345xykZV/eaCm34O4lL/pkSWm9/ahh
QYE0eKztVnxMCzCvPgFy5cd1ApnDXAxIf2ka8utMJ1Qzpg/1T03RWbE4Qpnm
v1rs+SQf0ECdBmMV/xzleGhDft5pnLeG2ppapqaoHKge4OBy1QzKWfORX2c6
oJoxYXZm5mnmWWp2uqRON5n0reTOMUjsuKijy3DFPwfRCdQiO4OEGrhlBzOc
q+rzwVpienapehSmXqyYq+DGBtcqj8AY+fneiZymKjWpiBAymUVcCpECYmLR
TMU/x7AYdloPjAl/rvm46Q7KYPLWvdojMEJhnenADMokp96VaDaePQKVbiol
Is7MVfxzCBdKM+aiFHxeXOt3sajgAteNlgZgmPw6s562g9xR+nuNL2+QwTD8
2XfkY1FoBO1Vlayxma1EtMOnfVdpHZhdTR/tJKOtCvmot+iiElpP4RKo+KcV
o4xovkRJ9nWPfL5zlF6NdWvXVj86u2dYuTQjeoTiP601hgkIeopMArC6ErvE
W0yek3peZOQL9dHQbcR8LFmvmxwzjuaVUHkSJy1q//MG+ZiuUaPLA4qPB9RH
IExhnVlPvw7PmyqlaFnJNERdgarFXbDtb2iVOUmWyVaM6fXJVv1plVqfy3uo
QMU/EiDCtq/JLGs+RfVa6sW30rvJ/haH4zjKpZkmUpg84QJCmyb2H9wiRSZa
AgElOLakRRJlv/2YVK0IXL7ac+yYiWjTQi8poYYI4EYp95rNvNFGIEhhnenA
BMovpiOz6MDVkxWaj7Joix823Wv1GLiI1JFmzLxTcksiFf+0ZhROYNJEcyjw
4VxVmm3c9umN+Yr4pzerPi/dlSZ7ACW3xnWgojPzVQSOHzM/cNkDE533PKH3
eEB/BILw/ExH0s3ZxfSuRNe7Ot1ek0tFw4+NJ/ITxL8X0V860T5aZN4Rqvin
taLwnWIPQW53IRoOD8w2dKVJqCLNSsR6lWNmBy5P0xZ1mUCaASfJz+AORmfo
Dgbap2p2e2GXWvnvman413APgVFpZuqYAarMRtXaLyzNqqixJhC8KUPSzN4W
eh3BJ+wYBReAAz4ddjHdK4lJM/F4irLfM1Pxr1gNbAwuk2aGS05ANwMOUjDu
OmAErapX0Wm/VrcX15ZoH80LLxMV/1wQVusyaWZYV4U0Aw5ScDU6kNnBLqZ/
pYpegNzB8uz4+HhCM1gdH93qAlJXUSv3AghW/MtsJafHx6dJYAOrTFrwEGhn
VVfUjHoBfLc3qj4xd0kzNvUZcH1DmgHn4L3NkeVUjVBQ2qmOiTpeeE2TWby5
+X6nhVDob/JKV4mFgSdW8Y+vu9WnwXfjyzeXxIY4PCzdJc2Mf5lbZd2c040I
jSahEJ3hgAuglsmLyptj/Z4cloNXF3ZeL48GZFkTMXQL5vTmTI9cofoPi54t
ypISqvhHtEclHFt/vTPXI5OLnbm7ldM2gE5dC8g9CeeSI0m06todWkzwzhqJ
NCYhyLzkx+Cn+/rH0kdZwWPGbsaMGdF2vcf+YnSe0B9BbXiBA0fcdvls5UpX
oicc+3tmK37Jryg+n681mtw5onH6ihbL3xFNbFaogqaX2SRQ8S93cO8PHT7t
Wr7u2Go6TRIQFJ+fpA3UyK+2GS4HCoyuFFTpase6EiuCx/aMNMhUrBqP/7FD
mtWpGB1/gO7MbQOiFFQzB+YltmKsdiW7s87t+CXAoatwgw/VVsWnPsXoYDZr
DvKBs3VcZ+bS2w/vP3yWYS6A6r2abLtoV0UgC9XiQYHs/sb9+5sHLBfC8Axh
d0Ug24vRoSJQc1AInK2bks33jJfH4mTpV6uEIj3flmqNFsrXgjxsj3KpJx7X
OovxGYIbM2zSpeyPmkG1xuYgr5rVz+PEJvTgWPyWVt5awIh++GjMjkra4pVn
3w7ITgzh8MDN4e7TWlkQUQsg1aiV3vjMkGxgv4WiC9taSbsOxehQSbspyKtm
9fRnZtbJdiY+f0c0sSU2FJzc5eQtgai8LTeWtEdKi5BoOftC39z9gmxnovlN
lg/MvBFbS2nbn2oG1aw5yKtm7nPm0B3oxgzv42FuB7qmh+TbFyxeRGF2LrqK
SSBTFxQoRldydlqo6FrxV8zvQNdoTNxt85LfDtiDLxJU5tk/b332dekhslws
WkqRxZWodmYZvgYwbLgXKEZHye4/SIx0+/IF9JSJNdFrmN4duHFYuNvmhYe9
e+lFgtqoiljLB6vF0zWdt8ql2cnJdYdaxOZNg8YukWJ0b0ihpqvaPniBy4mN
A8NaiuE0+gZj7W6bl3zCEIKy3EwuvZ1Sl1ohQuSjr2t/gxjJimSATonyCjlk
dYPZpozMm0LF6PIKm9kkDV6hyiNjwOLdNjFVyrYCl5BZn+qUWQVxIxw+jnUG
hlLcaN9waWZ8sxaxYnS59Umyvjh5c5HuMmHUaHasroCbsXq3TQyS01wP772K
n2pm/Z88V4/+9NXfxgUY6T2lrkfOfbj2v0orTdHtRm2BhEWL9zbBYnS6e02I
m5HYA3b0QVjA4t02MdyV4xmDwVsInXBIgr1Rcrvzvf7eONfpdL0Azs5jNOdf
9KJixegsbh3nMWGGjfIqwkwQHtGx306oSmViPZhZGQ32zBUFyFIjVP6XyLho
m3nq6KtnsqMt/o3AyWLF6Ljp11wkG7PMOebatYq1u21muCavF2mW2UqOdJ/u
Hr7SGbw8Pj0+vvAfCLzGQPSZU3c2aXWP9Pa2WPTqV7HA+Y9flpxK8iNOXl/S
1DwSPSv3J186/VqpLUxIFRIrRsfXr6a0FfpdG3KCHcPK3TYzlSOAcv+Z7ZTl
/o+/zfLJC+pbA6GR+K3nbg73tfeNJIWSKVQlRmd1SjKbOjou3BzWNrlKViqk
VFdI/qxY0plQMTqWNiJJgWspWqxJC7adiPzpfk0JRcS7qKboFkzfbXNTabMR
mvNNyxO+YeYWU3YbAPSgOexCqesCxegIufRmcnwgfNrvPx0KhcID44kHtcvQ
MWGpW7TY1Zi62+Yj+/rJxhNmFNaJ2yFQZSy/FCCnlQQuAWANmiQq98zvNbIR
ZNJGkRWvwsN3iGZNhZnOxERVtutLVOYRq6NXHD7AKzB51jhR0vAGAIvwUBVV
mjHfkp6rvMSRT2M4BlPpR7e7//LE4faCJoaafxokTujFUWTFyxDd+rfvLaaP
duJdFVMjyErz1N2tN3kf0tm5nfXJAKYxYC+kezUgQYfWvkNikNfJ7S5EWxVV
kPmq1OrT9vhoVVovDUfC0UQqoX4hEOy4mBAu7QeAILSInbNyBbXvAAB1gWSh
Kr3zzgg0Ij4duxoA4C1D21yQ5Z/Wlx/X7pwNRxcgygAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj/B3t25ok=
"], {{0, 70.5}, {307.5, 0}}, {0, 255},
ColorFunction->RGBColor,
ImageResolution->{96., 96.},
SmoothingQuality->"High"],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->Automatic,
ImageSizeRaw->{307.5, 70.5},
PlotRange->{{0, 307.5}, {0, 70.5}}]], "Text",
CellChangeTimes->{3.8621038899871407`*^9},
CellLabel->"In[2]:=",ExpressionUUID->"10352c39-4ae3-4947-a5d6-44ce04adf910"],
Cell[TextData[{
Cell[BoxData[
FormBox[
RowBox[{"f", "(",
RowBox[{
RowBox[{"d", "/", "d"}], " ", "\[Epsilon]"}], ")"}], TraditionalForm]],
ExpressionUUID->"a8b594a1-80d3-4244-83c2-305b4076758f"],
" bedeutet hier eine Funktion mit ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"d", "/", "d"}], " ", "\[Epsilon]"}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"07aacbc9-2542-4475-b65b-233421590692"],
" als Argument. Diese allgemeine Funktion eines Differentialoperators muss \
entsprechend interpretiert werden, z.B. als Reihe order als Fourieropereator \
oder als Weylsymbol."
}], "Text",
CellChangeTimes->{{3.862240242577845*^9, 3.862240309935479*^9}, {
3.862256639002268*^9,
3.862256739886361*^9}},ExpressionUUID->"357eecee-b2fa-4f9b-bbef-\
ef60d3e79d56"],
Cell[TextData[{
"Nehmen wir die Reihenentwicklung im folgenden. D.h. wenn ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(", "x", ")"}], "=",
RowBox[{
SubsuperscriptBox["\[Sum]",
RowBox[{"k", "=", "0"}], "\[Infinity]"],
RowBox[{
SubscriptBox["a", "k"],
SuperscriptBox["x", "k"]}]}]}], TraditionalForm]],ExpressionUUID->
"c22e6a71-97fd-4282-8e90-aa3c6c33913d"],
", dann ist"
}], "Text",
CellChangeTimes->{{3.862240369827323*^9, 3.862240393123933*^9}, {
3.862240431505848*^9, 3.862240469546298*^9}, {3.8622567506848497`*^9,
3.8622567577981253`*^9}},ExpressionUUID->"e1698654-4dac-44c9-8c47-\
6ba9be456c6d"],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(",
FractionBox["d",
RowBox[{"d", " ", "\[Epsilon]"}]], ")"}], " ", "=", " ",
RowBox[{
SubsuperscriptBox["\[Sum]",
RowBox[{"k", "=", "0"}], "\[Infinity]"],
RowBox[{
SubscriptBox["a", "k"],
RowBox[{
FractionBox[
SuperscriptBox["d", "n"],
RowBox[{"d", " ",
SuperscriptBox["\[Epsilon]", "n"]}]], "."}]}]}]}],
TraditionalForm]], "Input",
Evaluatable->False,
CellChangeTimes->{{3.862240398178227*^9, 3.8622404275274143`*^9}, {
3.8622404728739443`*^9, 3.86224049283356*^9}, {3.8622568174149113`*^9,
3.8622568710449266`*^9}},
FontWeight->"Plain",ExpressionUUID->"c1100d61-4933-44b1-8af3-9a2abd5afbfb"],
Cell[TextData[{
"angewendet auf eine Funktion ",
Cell[BoxData[
FormBox[
RowBox[{"g", "(", "\[Epsilon]", ")"}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"c296a24a-e32b-47cc-943f-aeec66c37981"],
":"
}], "Text",
CellChangeTimes->{{3.862256831722042*^9,
3.862256883284383*^9}},ExpressionUUID->"77de8ed4-3968-476d-9d5a-\
db7f284fe937"],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{"f", "(",
FractionBox["d",
RowBox[{"d", " ", "\[Epsilon]"}]], ")"}], " ", "\[SmallCircle]",
RowBox[{"g", "(", "\[Epsilon]", ")"}]}], "=", " ",
RowBox[{
SubsuperscriptBox["\[Sum]",
RowBox[{"k", "=", "0"}], "\[Infinity]"],
RowBox[{
SubscriptBox["a", "k"],
FractionBox[
RowBox[{
SuperscriptBox["d", "n"],
RowBox[{"g", "(", "\[Epsilon]", ")"}]}],
RowBox[{"d", " ",
SuperscriptBox["\[Epsilon]", "n"]}]]}]}]}], TraditionalForm]], "Input",\
Evaluatable->False,
CellChangeTimes->{{3.862240398178227*^9, 3.8622404275274143`*^9}, {
3.8622404728739443`*^9, 3.86224049283356*^9}, {3.8622568174149113`*^9,
3.862256818842607*^9}, {3.8622568564596643`*^9, 3.862256869256905*^9}},
FontWeight->"Plain",ExpressionUUID->"6749eb24-91c4-4d76-a97b-13c8213245ab"],
Cell["F\[UDoubleDot]r das Beispiel erf(z):", "Text",
Evaluatable->False,
CellChangeTimes->{{3.862240398178227*^9, 3.8622404275274143`*^9}, {
3.8622404728739443`*^9, 3.862240552211328*^9}},
FontWeight->"Plain",ExpressionUUID->"9f78aede-944b-4356-a279-e7d8f78e9a56"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SeriesCoefficient", "[",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
SuperscriptBox["t", "2"]}]], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "n"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862238239037607*^9, 3.862238255504787*^9},
3.8622385695994577`*^9, {3.862240508877213*^9, 3.8622405127375717`*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"4825b83c-d86d-41bf-982d-dbb9332975d5"],
Cell[BoxData[
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
FractionBox[
SuperscriptBox["\[ImaginaryI]", "n"],
RowBox[{
FractionBox["n", "2"], "!"}]],
RowBox[{
RowBox[{
RowBox[{"Mod", "[",
RowBox[{"n", ",", "2"}], "]"}], "\[Equal]", "0"}], "&&",
RowBox[{"n", "\[GreaterEqual]", "0"}]}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}},
Selectable->True]}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False,
StripWrapperBoxes->True]], "Output",
CellChangeTimes->{3.862238256191264*^9, 3.862238570553561*^9,
3.8622405134232397`*^9, 3.862257140753335*^9},
CellLabel->"Out[1]=",ExpressionUUID->"cc649ff8-b9b8-4480-b923-84c0a85553d9"]
}, Open ]],
Cell[TextData[{
"Nun brauchen wir die n-te (n symbolisch) Ableiting von ",
Cell[BoxData[
FormBox[
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"b", " ", "\[Epsilon]"}]], "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Epsilon]"}]]}], "\[Epsilon]"], TraditionalForm]],
ExpressionUUID->"ad5873ff-c5a2-42e2-992f-dd21d368ee28"],
":"
}], "Text",
Evaluatable->False,
CellChangeTimes->{{3.862240398178227*^9, 3.8622404275274143`*^9}, {
3.8622404728739443`*^9, 3.862240626001116*^9}, {3.862256888648134*^9,
3.862256899405284*^9}},
FontWeight->"Plain",ExpressionUUID->"e4d2d238-e8c9-4862-b7e9-3fc5c3b67740"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"b", " ", "\[Epsilon]"}]], "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Epsilon]"}]]}], "\[Epsilon]"], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "n"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8622382007523317`*^9, 3.8622382081619377`*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"7d50efc0-f0bd-4846-ab43-23d71fd07be8"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{"-", "n"}]], " ",
RowBox[{"n", "!"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{
InterpretationBox[
TemplateBox[<|"head" -> "DifferenceRoot", "big" -> GridBox[{{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]", " ",
RowBox[{"\[FormalY]", "[", "\[FormalN]", "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-", "\[FormalN]", "+",
RowBox[{"a", " ", "\[Epsilon]"}]}], ")"}], " ",
RowBox[{"\[FormalY]", "[",
RowBox[{"1", "+", "\[FormalN]"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "\[FormalN]"}], ")"}], " ",
RowBox[{"\[FormalY]", "[",
RowBox[{"2", "+", "\[FormalN]"}], "]"}]}]}], "\[Equal]",
"0"}]}, {
RowBox[{
RowBox[{"\[FormalY]", "[", "0", "]"}], "\[Equal]", "0"}]}, {
RowBox[{
RowBox[{"\[FormalY]", "[", "1", "]"}], "\[Equal]",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Epsilon]"}]]}]}},
BaseStyle -> {"HolonomicInnerGrid"}], "small" ->
RowBox[{"\[FormalY]", "[",
RowBox[{"2", "+", "\[FormalN]"}], "]"}], "branchcuts" -> "None"|>,
"HolonomicDisplay"],
DifferenceRoot[
Function[{\[FormalY], \[FormalN]}, {-$CellContext`a $CellContext`\
\[Epsilon] \[FormalY][\[FormalN]] + (-1 - \[FormalN] + $CellContext`a \
$CellContext`\[Epsilon]) \[FormalY][1 + \[FormalN]] + (
1 + \[FormalN]) \[FormalY][2 + \[FormalN]] == 0, \[FormalY][0] ==
0, \[FormalY][1] == E^($CellContext`a $CellContext`\[Epsilon])}]]],
"[",
RowBox[{"1", "+", "n"}], "]"}]}], "+",
RowBox[{
InterpretationBox[
TemplateBox[<|"head" -> "DifferenceRoot", "big" -> GridBox[{{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "b"}], " ", "\[Epsilon]", " ",
RowBox[{"\[FormalY]", "[", "\[FormalN]", "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-", "\[FormalN]", "+",
RowBox[{"b", " ", "\[Epsilon]"}]}], ")"}], " ",
RowBox[{"\[FormalY]", "[",
RowBox[{"1", "+", "\[FormalN]"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "\[FormalN]"}], ")"}], " ",
RowBox[{"\[FormalY]", "[",
RowBox[{"2", "+", "\[FormalN]"}], "]"}]}]}], "\[Equal]",
"0"}]}, {
RowBox[{
RowBox[{"\[FormalY]", "[", "0", "]"}], "\[Equal]", "0"}]}, {
RowBox[{
RowBox[{"\[FormalY]", "[", "1", "]"}], "\[Equal]",
SuperscriptBox["\[ExponentialE]",
RowBox[{"b", " ", "\[Epsilon]"}]]}]}},
BaseStyle -> {"HolonomicInnerGrid"}], "small" ->
RowBox[{"\[FormalY]", "[",
RowBox[{"2", "+", "\[FormalN]"}], "]"}], "branchcuts" -> "None"|>,
"HolonomicDisplay"],
DifferenceRoot[
Function[{\[FormalY], \[FormalN]}, {-$CellContext`b $CellContext`\
\[Epsilon] \[FormalY][\[FormalN]] + (-1 - \[FormalN] + $CellContext`b \
$CellContext`\[Epsilon]) \[FormalY][1 + \[FormalN]] + (
1 + \[FormalN]) \[FormalY][2 + \[FormalN]] == 0, \[FormalY][0] ==
0, \[FormalY][1] == E^($CellContext`b $CellContext`\[Epsilon])}]]],
"[",
RowBox[{"1", "+", "n"}], "]"}]}], ")"}]}], "\[Epsilon]"]], "Output",
CellChangeTimes->{3.862238210332466*^9, 3.862240618960698*^9,
3.8622571435288343`*^9},
CellLabel->"Out[2]=",ExpressionUUID->"1e545889-134c-4b16-955b-e622fb56cd34"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FunctionExpand", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.86223822014048*^9, 3.8622382264258413`*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"22d61034-0fc6-439d-996a-c08db27bb9ee"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{"-", "n"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+", "n"}], ",",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]"}]}], "]"}]}], "\[Epsilon]"]}],
"+",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{"-", "n"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+", "n"}], ",",
RowBox[{
RowBox[{"-", "b"}], " ", "\[Epsilon]"}]}], "]"}]}],
"\[Epsilon]"]}]], "Output",
CellChangeTimes->{3.862238227513771*^9, 3.862240620330598*^9,
3.862257144488595*^9},
CellLabel->"Out[3]=",ExpressionUUID->"84e01a15-775e-4ac9-971a-1f3b7a22959d"]
}, Open ]],
Cell[TextData[{
"Jetzt m\[UDoubleDot]ssen wir summieren (nach Umbenennung ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"n", "/", "2"}], "=", "m"}], TraditionalForm]],ExpressionUUID->
"3249a6ad-d3e7-40fb-aa60-af8aebd00b5e"],
" um den mod zu elimiieren und kleinere Formeln zu haben). Nehmen wir erst \
mal nur den ersten Summanden). Die Summe kann man leider nicht direkt mit ",
StyleBox["Sum[]", "MR"],
" erhalten:"
}], "Text",
CellChangeTimes->{{3.862240627811448*^9, 3.862240705931301*^9}, {
3.862240976629874*^9, 3.8622410086893578`*^9}, {3.86224734759306*^9,
3.862247375193008*^9}, {3.86225690848356*^9,
3.862256919881785*^9}},ExpressionUUID->"824f3013-5515-435f-a6f2-\
cad7272c5604"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", "m"}]], " "}],
RowBox[{"m", "!"}]],
RowBox[{"(",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], "m"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+",
RowBox[{"2", "m"}]}], ",",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]"}]}], "]"}]}],
"\[Epsilon]"]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"a", ">", "0"}], "&&",
RowBox[{"\[Epsilon]", ">", "0"}]}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.8622383107888727`*^9, 3.8622383185681047`*^9}, {
3.86223836908204*^9, 3.862238390769361*^9}, 3.862238595615343*^9, {
3.862240732953355*^9, 3.8622407361309834`*^9}, {3.8622411578032017`*^9,
3.862241167470893*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"0c740ecb-5a99-4618-8069-35b05a400cfb"],
Cell[BoxData[
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], ",",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]"}]}], "]"}]}],
RowBox[{"\[Epsilon]", " ",
RowBox[{"m", "!"}]}]]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"a", ">", "0"}], "&&",
RowBox[{"\[Epsilon]", ">", "0"}]}]}]}], "]"}]], "Output",
CellChangeTimes->{
3.8622384412153673`*^9, 3.862238637550206*^9, 3.862240712112967*^9, {
3.862241151398144*^9, 3.8622411679287*^9}, 3.862241218475071*^9,
3.8622571945595093`*^9},
CellLabel->"Out[4]=",ExpressionUUID->"6c6cc61d-ad69-4b00-943f-ae9be34a56ed"]
}, Open ]],
Cell[TextData[{
"Um die Summe in geschlossener Form zu erhalten, benutzen wir die \
wohlbekannte Integraldarstellung von ",
Cell[BoxData[
FormBox[
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"a", ",", "z"}], ")"}], TraditionalForm]],ExpressionUUID->
"c6827237-d64d-4b79-bfde-c87e4ad67a9a"]
}], "Text",
CellChangeTimes->{{3.8622407556667747`*^9, 3.862240791917399*^9}, {
3.862241186205442*^9, 3.8622411916225033`*^9}, {3.862256930083396*^9,
3.8622569562354937`*^9},
3.8622571527523737`*^9},ExpressionUUID->"4a8a1492-2e77-4a48-81c6-\
36b543e6d8fb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"t", "^",
RowBox[{"(",
RowBox[{"a", "-", "1"}], ")"}]}], "/",
RowBox[{"E", "^", "t"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "z", ",", "Infinity"}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8622392895610456`*^9, 3.8622392953520937`*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"dbb43103-79c2-42f3-8fd3-06e64e422de2"],
Cell[BoxData[
RowBox[{"Gamma", "[",
RowBox[{"a", ",", "z"}], "]"}]], "Output",
CellChangeTimes->{3.8622392959391623`*^9, 3.8622571948513002`*^9},
CellLabel->"Out[5]=",ExpressionUUID->"aabd3943-d1f0-41a7-86c7-ece945d9c8cc"]
}, Open ]],
Cell[TextData[{
"umgeschrieben zu (mit ",
Cell[BoxData[
FormBox[
RowBox[{"\[Tau]", "=",
RowBox[{"t", "/", "z"}]}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"963ee91b-28ef-4a99-96d5-475d50dabd0a"],
")"
}], "Text",
CellChangeTimes->{{3.862240800609912*^9,
3.862240823722784*^9}},ExpressionUUID->"bd3fe8bc-5d37-4321-a66e-\
63642c9c0b28"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"z",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Tau]", " ", "z"}], ")"}], "^",
RowBox[{"(",
RowBox[{"a", "-", "1"}], ")"}]}], "/",
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{"\[Tau]", " ", "z"}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "1", ",", "Infinity"}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862239588202591*^9, 3.8622395910969973`*^9}, {
3.8622569732003393`*^9, 3.8622569776870823`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"8e7cffd1-ca19-4d5b-a188-ce20fa9224c2"],
Cell[BoxData[
RowBox[{"Gamma", "[",
RowBox[{"a", ",", "z"}], "]"}]], "Output",
CellChangeTimes->{{3.862239588595214*^9, 3.8622395917451963`*^9},
3.8622571950182447`*^9},
CellLabel->"Out[6]=",ExpressionUUID->"95903e3a-e990-4b32-a7d0-65aa4efd9750"]
}, Open ]],
Cell["\<\
Nun vertauschen wir das Integral mit der Summe, and summieren zuerst:\
\>", "Text",
CellChangeTimes->{{3.862240839341486*^9,
3.862240862135457*^9}},ExpressionUUID->"250bd61a-7854-4cb0-9d86-\
6ddde142eaae"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], "m"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+",
RowBox[{"2", "m"}]}], ",",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]"}]}], "]"}]}], "\[Epsilon]"]}],
")"}], "/.",
RowBox[{
RowBox[{"Gamma", "[",
RowBox[{"a_", ",", "z_"}], "]"}], "\[RuleDelayed]",
FractionBox[
RowBox[{"z", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Tau]", " ", "z"}], ")"}],
RowBox[{"a", "-", "1"}]]}],
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[Tau]", " ", "z"}]]]}]}]], "Input",
CellChangeTimes->{{3.8622393630002747`*^9, 3.862239363389776*^9},
3.862239613215885*^9},
CellLabel->"In[7]:=",ExpressionUUID->"afa2413d-baac-4e96-9cf6-200d0cca4c70"],
Cell[BoxData[
RowBox[{"a", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Epsilon]", " ", "\[Tau]"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]", " ", "\[Tau]"}], ")"}],
RowBox[{"2", " ", "m"}]]}]], "Output",
CellChangeTimes->{3.862239363852007*^9, 3.8622396137048264`*^9,
3.862257195026814*^9},
CellLabel->"Out[7]=",ExpressionUUID->"251f8c96-2493-424a-a695-97acb9ca7b09"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", "m"}]], " "}],
RowBox[{"m", "!"}]], "a", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Epsilon]", " ", "\[Tau]"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]", " ", "\[Tau]"}], ")"}],
RowBox[{"2", " ", "m"}]]}], " ", ",",
RowBox[{"{",
RowBox[{"m", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862239375403471*^9, 3.862239381576147*^9},
3.8622396320009193`*^9},
CellLabel->"In[8]:=",ExpressionUUID->"8c592684-50b6-4372-bf90-523214c07514"],
Cell[BoxData[
RowBox[{"a", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Tau]", " ",
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"a", " ", "\[Tau]"}]}], ")"}]}]]}]], "Output",
CellChangeTimes->{3.862239382507124*^9, 3.8622396326647377`*^9,
3.8622571950830507`*^9},
CellLabel->"Out[8]=",ExpressionUUID->"1cfb5a7c-e8d1-415a-8616-716f68e25e24"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"a", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Tau]", " ",
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"a", " ", "\[Tau]"}]}], ")"}]}]]}], ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "1", ",", "Infinity"}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862239400030683*^9, 3.8622394029171057`*^9},
3.862239640931423*^9},
CellLabel->"In[9]:=",ExpressionUUID->"d6a3d65a-1ff2-4207-bc97-bf755c36930f"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox[
SuperscriptBox["\[Epsilon]", "2"], "4"]], " ",
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
SuperscriptBox["a", "2"]], "-",
RowBox[{"a", " ",
RowBox[{"Erf", "[",
RowBox[{"a", "-",
FractionBox["\[Epsilon]", "2"]}], "]"}]}]}], ")"}]}],
RowBox[{"2", " ", "a"}]]], "Output",
CellChangeTimes->{3.862239406422392*^9, 3.8622396430144777`*^9,
3.862257196518076*^9},
CellLabel->"Out[9]=",ExpressionUUID->"e11b2eae-8a9f-40ab-b050-e0956c9c1a13"]
}, Open ]],
Cell[TextData[{
"Und nun die Reihenentwicklung um ",
Cell[BoxData[
FormBox[
RowBox[{"\[Epsilon]", "\[TildeTilde]", "0"}], TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"9513ccca-2e76-4240-bd7b-e985122e4e10"],
":"
}], "Text",
CellChangeTimes->{{3.86224091506395*^9,
3.8622409345711193`*^9}},ExpressionUUID->"5d2dfadc-f93b-4147-879d-\
13e3e30fa13b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{"%", ",", " ",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862239651047491*^9, 3.862239661098763*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"995c26ba-88f6-44b4-8c36-0a204ab181f4"],
Cell[BoxData[
InterpretationBox[
RowBox[{
FractionBox[
RowBox[{
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
SuperscriptBox["a", "2"]], "-",
RowBox[{"a", " ",
RowBox[{"Erf", "[", "a", "]"}]}]}], ")"}]}],
RowBox[{"2", " ", "a"}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
SuperscriptBox["a", "2"]}]], " ", "\[Epsilon]"}], "+",
FractionBox[
RowBox[{
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
SuperscriptBox["a", "2"]}]]}],
RowBox[{"2", " ",
SqrtBox["\[Pi]"]}]], "+",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
SuperscriptBox["a", "2"]], "-",
RowBox[{"a", " ",
RowBox[{"Erf", "[", "a", "]"}]}]}], ")"}]}]}], ")"}], " ",
SuperscriptBox["\[Epsilon]", "2"]}],
RowBox[{"2", " ", "a"}]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "\[Epsilon]", "]"}], "3"],
SeriesData[$CellContext`\[Epsilon], 0, {}, 0, 3, 1],
Editable->False]}],
SeriesData[$CellContext`\[Epsilon], 0, {
Rational[1, 2] $CellContext`a^(-1)
Pi^Rational[1, 2] (($CellContext`a^2)^Rational[1, 2] - $CellContext`a
Erf[$CellContext`a]), Rational[1, 2] E^(-$CellContext`a^2),
Rational[1, 2] $CellContext`a^(-1)
Pi^Rational[1, 2] (
Rational[1, 2] $CellContext`a^2 E^(-$CellContext`a^2) Pi^Rational[-1, 2] +
Rational[1, 4] (($CellContext`a^2)^Rational[1, 2] - $CellContext`a
Erf[$CellContext`a]))}, 0, 3, 1],
Editable->False]], "Output",
CellChangeTimes->{3.862239661571251*^9, 3.862257196597624*^9},
CellLabel->"Out[10]=",ExpressionUUID->"fbde01e1-3761-4033-9a50-c53d72688bf6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Limit", "[",
RowBox[{
RowBox[{"Normal", "[", "%", "]"}], ",",
RowBox[{"\[Epsilon]", "->", "0"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862241026340332*^9, 3.862241037671328*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"49ae1b84-12f1-4725-b46c-ddbbc07d7be3"],
Cell[BoxData[
FractionBox[
RowBox[{
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
SuperscriptBox["a", "2"]], "-",
RowBox[{"a", " ",
RowBox[{"Erf", "[", "a", "]"}]}]}], ")"}]}],
RowBox[{"2", " ", "a"}]]], "Output",
CellChangeTimes->{3.862257196607094*^9},
CellLabel->"Out[11]=",ExpressionUUID->"085fbc59-d8e2-4c44-acb4-b9d18f2f6446"]
}, Open ]],
Cell[TextData[{
"Selbiges nun mit dem zweiten, ",
Cell[BoxData[
FormBox["b", TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"639e858e-3c73-4f57-a067-8b2ec6115bdd"],
"-Term and die beiden Ergebnisse subtrahieren:"
}], "Text",
CellChangeTimes->{{3.862240944535067*^9, 3.86224095467381*^9}, {
3.862256194990553*^9, 3.8622562188937283`*^9}, {3.862256995313092*^9,
3.862256995656823*^9}},ExpressionUUID->"e547ff67-ef58-4638-a065-\
32580ecd19b1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
FractionBox["2",
SqrtBox["\[Pi]"]],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
SuperscriptBox["a", "2"]], "-",
RowBox[{"a", " ",
RowBox[{"Erf", "[", "a", "]"}]}]}], ")"}]}],
RowBox[{"2", " ", "a"}]], "-",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
SuperscriptBox["a", "2"]], "-",
RowBox[{"a", " ",
RowBox[{"Erf", "[", "a", "]"}]}]}], ")"}]}],
RowBox[{"2", " ", "a"}]], "/.",
RowBox[{"a", "->", "b"}]}], ")"}]}], ")"}]}], ",",
RowBox[{
RowBox[{"a", ">", "0"}], "&&",
RowBox[{"b", ">", "0"}]}]}], "]"}], " ", "/.", " ",
RowBox[{"{",
RowBox[{
RowBox[{"a", "->", "0"}], ",",
RowBox[{"b", "->", "z"}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.862241257393342*^9, 3.862241333520135*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"f7cab4e9-007c-46ba-96ae-0943a7a7846a"],
Cell[BoxData[
RowBox[{"Erf", "[", "z", "]"}]], "Output",
CellChangeTimes->{{3.8622412638931627`*^9, 3.862241334076919*^9},
3.8622571966404867`*^9},
CellLabel->"Out[12]=",ExpressionUUID->"ad93d5f4-0855-4368-9a14-992214ba959f"]
}, Open ]],
Cell["Genau das zu erwartende Ergebnis.", "Text",
CellChangeTimes->{{3.8622562354120092`*^9, 3.862256249504129*^9}, {
3.8622570019236517`*^9,
3.862257003596014*^9}},ExpressionUUID->"d6d4c9e9-b186-40c8-baa0-\
60ae78723bd7"],
Cell[TextData[{
"Diese Formeln f\[UDoubleDot]r das Integrieren durch differentieren sind \
zwar \[OpenCurlyQuote]h\[UDoubleDot]bsch\[CloseCurlyQuote], aber i.a. ",
StyleBox["viel",
FontSlant->"Italic"],
" schwieriger zu benutzen als direkte Integrationsformeln. Oftmals muss man \
noch eine Hadamard Regularisierung zus\[ADoubleDot]tzlich machen um die Summe \
zum Konvergieren zu bringen. Ramanujan\[CloseCurlyQuote]s master theorem ist \
oft n\[UDoubleDot]tzlich in dieser Hinsicht."
}], "Text",
CellChangeTimes->{{3.862241038782672*^9, 3.8622411413068*^9}, {
3.8622417274535313`*^9, 3.862241791878676*^9}, {3.862241848102416*^9,
3.8622418648735857`*^9}, 3.8622561856471453`*^9, {3.862257008250883*^9,
3.862257037763348*^9}},ExpressionUUID->"d983c46c-eaf0-459c-99f6-\
3caaca9aa780"],
Cell["\<\
Im Beispiel h\[ADoubleDot]tte auch den Summanden erst in eine Reihe in \
\[Epsilon] entwickeln k\[ODoubleDot]nnen, Hardamard-Terme eliminieren und \
dann summieren k\[ODoubleDot]nnen:\
\>", "Text",
CellChangeTimes->{{3.862241454268537*^9, 3.862241541022587*^9}, {
3.862257051083605*^9,
3.862257077597114*^9}},ExpressionUUID->"cdcdf279-7632-4a26-a4c8-\
0c78343ae6cf"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ser", "=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", "m"}]], " "}],
RowBox[{"m", "!"}]],
RowBox[{"(",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], "m"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+",
RowBox[{"2", "m"}]}], ",",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]"}]}], "]"}]}],
"\[Epsilon]"]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "0", ",", "4"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"\[Epsilon]", ">", "0"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8622384844292927`*^9, 3.862238520608712*^9},
3.8622385901408043`*^9, {3.862238719781782*^9, 3.86223872054815*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"aecdfe0a-bbe5-4d52-809e-2ee52abf0e90"],
Cell[BoxData[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], "]"}]}],
RowBox[{
RowBox[{"m", "!"}], " ", "\[Epsilon]"}]]}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "\[Epsilon]", "]"}], "5"],
SeriesData[$CellContext`\[Epsilon], 0, {}, -1, 5, 1],
Editable->False]}],
SeriesData[$CellContext`\[Epsilon],
0, {-Complex[0, 1]^(2 $CellContext`m) Factorial[$CellContext`m]^(-1)
Gamma[1 + 2 $CellContext`m]}, -1, 5, 1],
Editable->False], ")"}], "+",
RowBox[{
SuperscriptBox["\[Epsilon]",
RowBox[{"2", " ", "m"}]], " ",
RowBox[{"(",
InterpretationBox[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ", "a"}],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], ")"}], " ",
RowBox[{"m", "!"}]}]]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}]], " ", "a", " ", "\[Epsilon]"}],
RowBox[{
RowBox[{"(",
RowBox[{"2", "+",
RowBox[{"2", " ", "m"}]}], ")"}], " ",
RowBox[{"m", "!"}]}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "3"]}], ")"}], " ",
SuperscriptBox["\[Epsilon]", "2"]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ", "m"}]}], ")"}], " ",
RowBox[{"m", "!"}]}], ")"}]}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "4"]}], ")"}], " ",
SuperscriptBox["\[Epsilon]", "3"]}],
RowBox[{"12", " ",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"2", "+", "m"}], ")"}], " ",
RowBox[{"m", "!"}]}], ")"}]}]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "\[Epsilon]", "]"}], "4"],
SeriesData[$CellContext`\[Epsilon], 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[$CellContext`\[Epsilon],
0, {-Complex[0, 1]^(2 $CellContext`m) (-$CellContext`a)^(
2 $CellContext`m) $CellContext`a (1 + 2 $CellContext`m)^(-1)/
Factorial[$CellContext`m],
Complex[0, 1]^(2 $CellContext`m) (-$CellContext`a)^(1 +
2 $CellContext`m) $CellContext`a (2 + 2 $CellContext`m)^(-1)/
Factorial[$CellContext`m], Rational[-1, 2]
Complex[0, 1]^(2 $CellContext`m) (-$CellContext`a)^(
2 $CellContext`m) $CellContext`a^3 (3 + 2 $CellContext`m)^(-1)/
Factorial[$CellContext`m], Rational[-1, 12]
Complex[0, 1]^(2 $CellContext`m) (-$CellContext`a)^(
2 $CellContext`m) $CellContext`a^4 (2 + $CellContext`m)^(-1)/
Factorial[$CellContext`m]}, 0, 4, 1],
Editable->False], ")"}]}]}], ")"}]}]], "Output",
CellChangeTimes->{{3.8622384926131353`*^9, 3.862238521167281*^9},
3.862238590493286*^9, 3.862238638071422*^9, 3.862238720889298*^9,
3.8622571966951017`*^9},
CellLabel->"Out[13]=",ExpressionUUID->"82ecac53-482c-4dac-b167-945f1cfe737d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ExpandAll", "[",
RowBox[{"Normal", "[", "ser", "]"}], "]"}]], "Input",
CellChangeTimes->{{3.862238639864709*^9, 3.862238646145565*^9}, {
3.862238723530847*^9, 3.862238728092844*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"0a3d20fe-4635-430f-b92d-5dab7b66b324"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ", "a", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox["\[Epsilon]",
RowBox[{"2", " ", "m"}]]}],
RowBox[{
RowBox[{"m", "!"}], "+",
RowBox[{"2", " ", "m", " ",
RowBox[{"m", "!"}]}]}]]}], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox["\[Epsilon]",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}]]}],
RowBox[{
RowBox[{"2", " ",
RowBox[{"m", "!"}]}], "+",
RowBox[{"2", " ", "m", " ",
RowBox[{"m", "!"}]}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "3"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox["\[Epsilon]",
RowBox[{"2", "+",
RowBox[{"2", " ", "m"}]}]]}],
RowBox[{
RowBox[{"6", " ",
RowBox[{"m", "!"}]}], "+",
RowBox[{"4", " ", "m", " ",
RowBox[{"m", "!"}]}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox["\[Epsilon]",
RowBox[{"3", "+",
RowBox[{"2", " ", "m"}]}]]}],
RowBox[{
RowBox[{"24", " ",
RowBox[{"m", "!"}]}], "+",
RowBox[{"12", " ", "m", " ",
RowBox[{"m", "!"}]}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], "]"}]}],
RowBox[{"\[Epsilon]", " ",
RowBox[{"m", "!"}]}]]}]], "Output",
CellChangeTimes->{3.862238646720808*^9, 3.862238728386045*^9,
3.8622571967324877`*^9},
CellLabel->"Out[14]=",ExpressionUUID->"e4e4ead5-8c3d-4956-bd1f-d4d72247eba8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PowerExpand", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.862238735310843*^9, 3.862238738763438*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"9f2a1800-a11b-4f23-a683-e6d34b6515ef"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}]]}],
RowBox[{
RowBox[{"m", "!"}], "+",
RowBox[{"2", " ", "m", " ",
RowBox[{"m", "!"}]}]}]]}], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a",
RowBox[{"2", "+",
RowBox[{"2", " ", "m"}]}]], " ", "\[Epsilon]"}],
RowBox[{
RowBox[{"2", " ",
RowBox[{"m", "!"}]}], "+",
RowBox[{"2", " ", "m", " ",
RowBox[{"m", "!"}]}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a",
RowBox[{"3", "+",
RowBox[{"2", " ", "m"}]}]], " ",
SuperscriptBox["\[Epsilon]", "2"]}],
RowBox[{
RowBox[{"6", " ",
RowBox[{"m", "!"}]}], "+",
RowBox[{"4", " ", "m", " ",
RowBox[{"m", "!"}]}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a",
RowBox[{"4", "+",
RowBox[{"2", " ", "m"}]}]], " ",
SuperscriptBox["\[Epsilon]", "3"]}],
RowBox[{
RowBox[{"24", " ",
RowBox[{"m", "!"}]}], "+",
RowBox[{"12", " ", "m", " ",
RowBox[{"m", "!"}]}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{
RowBox[{"-", "2"}], " ", "m"}]], " ",
SuperscriptBox["\[ImaginaryI]",
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["\[Epsilon]",
RowBox[{
RowBox[{"-", "1"}], "-",
RowBox[{"2", " ", "m"}]}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], "]"}]}],
RowBox[{"m", "!"}]]}]], "Output",
CellChangeTimes->{3.862238739097807*^9, 3.862257196743754*^9},
CellLabel->"Out[15]=",ExpressionUUID->"ff265dcd-101c-4b48-b8d9-c012090021da"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{" ",
RowBox[{
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{"#", ",",
RowBox[{
RowBox[{"\[Epsilon]", ">", "0"}], "&&",
RowBox[{"m", "\[Element]", "Integers"}], "&&",
RowBox[{"m", ">",
RowBox[{"-", "0"}]}], "&&",
RowBox[{"a", ">", "0"}]}]}], "]"}], "&"}], "/@", " ",
RowBox[{"ExpandAll", "[",
RowBox[{"Normal", "[", "ser", "]"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.8622388419139233`*^9, 3.8622389422402782`*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"ce834488-f2e0-427a-b643-95324c00d6e8"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[ImaginaryI]", " ", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ", "a"}],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], ")"}], " ",
RowBox[{"m", "!"}]}]]}], "-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[ImaginaryI]", " ", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "3"], " ",
SuperscriptBox["\[Epsilon]", "2"]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ", "m"}]}], ")"}], " ",
RowBox[{"m", "!"}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[ImaginaryI]", " ", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ",
SuperscriptBox["a", "4"], " ",
SuperscriptBox["\[Epsilon]", "3"]}],
RowBox[{"12", " ",
RowBox[{"(",
RowBox[{"2", "+", "m"}], ")"}], " ",
RowBox[{"m", "!"}]}]], "-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "m"], " ",
SuperscriptBox["\[Epsilon]",
RowBox[{
RowBox[{"-", "1"}], "-",
RowBox[{"2", " ", "m"}]}]], " ",
RowBox[{
RowBox[{"(",
RowBox[{"2", " ", "m"}], ")"}], "!"}]}],
RowBox[{"m", "!"}]], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[Epsilon]",
RowBox[{
RowBox[{"-", "1"}], "-",
RowBox[{"2", " ", "m"}]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[ImaginaryI]", " ", "a", " ", "\[Epsilon]"}], ")"}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+", "m"}], ")"}]}]]}],
RowBox[{"2", " ",
RowBox[{"Gamma", "[",
RowBox[{"2", "+", "m"}], "]"}]}]]}]], "Output",
CellChangeTimes->{{3.86223893718696*^9, 3.862238942729177*^9},
3.8622571969706297`*^9},
CellLabel->"Out[16]=",ExpressionUUID->"fadb2d90-584e-45db-8003-03b52ffe8ebd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[ImaginaryI]", " ", "a"}], ")"}],
RowBox[{"2", " ", "m"}]], " ", "a"}],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ", "m"}]}], ")"}], " ",
RowBox[{"m", "!"}]}]]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.862241564939908*^9, 3.862241571387369*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"f9cd7f07-bdf1-4928-8520-1649ec076e33"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox["\[Pi]"], " ",
RowBox[{"Erf", "[", "a", "]"}]}]], "Output",
CellChangeTimes->{3.862241572383963*^9, 3.862257197011167*^9},
CellLabel->"Out[17]=",ExpressionUUID->"f6574560-b074-4a74-95f0-7a49d075781b"]
}, Open ]],
Cell["\<\
Also w\[UDoubleDot]rde die korrekte form von integrate$new$formula (f\
\[UDoubleDot]r Funktionen ohne Laurentterme) etwa so aussehen:\
\>", "Text",
CellChangeTimes->{{3.8622564281732597`*^9, 3.862256496988791*^9}, {
3.862257095482667*^9,
3.8622571000340014`*^9}},ExpressionUUID->"0dfff74d-0062-4072-86d9-\
fc35b24277eb"],
Cell[BoxData[
RowBox[{
RowBox[{"\[CapitalGamma]Sum", "[",
RowBox[{"\[Alpha]_", ",", "a_", ",", "\[Epsilon]_", ",", "n_"}], "]"}],
" ", ":=", " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"sum", "=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"\[Alpha]", " ", "a", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"a", " ", "\[Epsilon]", " ", "\[Tau]"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", " ", "\[Tau]"}], ")"}], "n"]}], " ", ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "1", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "False"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.862255723907303*^9, 3.862255763517531*^9}, {
3.862255802745286*^9, 3.8622558063293743`*^9}, {3.862255849088512*^9,
3.862255916137781*^9}, {3.862256039891897*^9, 3.86225604086131*^9}, {
3.8622562960129957`*^9, 3.8622563327144136`*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"cf3bae6a-3f17-4a46-8ea2-2d71f9558092"],
Cell[BoxData[
RowBox[{
RowBox[{"integrate$new$formula", "[",
RowBox[{"f_", ",", "a_", ",", "b_"}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "n", ",", "x"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Rho]", "=",
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "\[Epsilon]"}], ")"}],
RowBox[{"-", "n"}]]}], " ",
RowBox[{
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"1", "+", "n"}], ",",
RowBox[{
RowBox[{"-", "a"}], " ", "\[Epsilon]"}]}], "]"}], "/",
"\[Epsilon]"}]}]}], ",", "\[Alpha]", ",", "sum"}], " ", "}"}], ",",
"\[IndentingNewLine]", " ",
RowBox[{
RowBox[{"\[Alpha]", "=",
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]", " ",
RowBox[{"sum", " ", "=",
RowBox[{"\[CapitalGamma]Sum", "[",
RowBox[{"\[Alpha]", ",", "a", ",", "\[Epsilon]", ",", "n"}], "]"}]}],
";", "\[IndentingNewLine]", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{"FreeQ", "[",
RowBox[{"sum", ",",
RowBox[{"_Sum", "|", "_Integrate"}], ",",
RowBox[{"{",
RowBox[{"0", ",", " ", "\[Infinity]"}], "}"}]}], "]"}], ",", " ",
"\[IndentingNewLine]", " ",
RowBox[{"Simplify", "[",
RowBox[{"Limit", "[",
RowBox[{
RowBox[{"(",
RowBox[{"sum", " ", "-", " ",
RowBox[{"(",
RowBox[{"sum", "/.", " ",
RowBox[{"a", "->", "b"}]}], ")"}]}], ")"}], ",",
RowBox[{"\[Epsilon]", "->", "0"}]}], "]"}], "]"}], ",",
"\[IndentingNewLine]", " ",
RowBox[{"Failure", "[",
RowBox[{"\"\<NoClosedFormForSum\>\"", ",",
RowBox[{"<|", "|>"}]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]",
" ", "]"}]}], "]"}]}]], "Input",
CellChangeTimes->{
3.8622551116736193`*^9, {3.862255142057296*^9, 3.8622554817025537`*^9},
3.86225553433344*^9, {3.862255939816197*^9, 3.862255990899979*^9}, {
3.862256457447362*^9, 3.862256459385075*^9}, {3.8622571077436733`*^9,
3.862257109492276*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"f3feb4e2-181f-4d03-9f20-74d0ef6340ee"],
Cell["Z.B.:", "Text",
CellChangeTimes->{{3.862256500138822*^9,
3.862256506175769*^9}},ExpressionUUID->"cc460eb9-11e2-4a68-b359-\
d07b836aaada"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"integrate$new$formula", "[",
RowBox[{
RowBox[{
RowBox[{"#", "^", "3"}], "&"}], ",", "a", ",", "b"}], "]"}]], "Input",
CellChangeTimes->{{3.8622554474979153`*^9, 3.862255459306686*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"ae08714d-ea28-4dea-86c3-07d90fab9e9f"],
Cell[BoxData[
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox["a", "4"]}], "+",
SuperscriptBox["b", "4"]}], ")"}]}]], "Output",
CellChangeTimes->{{3.8622554598440313`*^9, 3.862255484383046*^9},
3.862255536965683*^9, 3.862256007351523*^9, 3.862256047594088*^9, {
3.8622563071987343`*^9, 3.862256336952458*^9}, 3.8622571978000717`*^9},
CellLabel->"Out[20]=",ExpressionUUID->"cf3bc7a3-0fc9-45b5-9905-6a4657bc1a16"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"integrate$new$formula", "[",
RowBox[{"Sin", ",", "a", ",", "b"}], "]"}]], "Input",
CellChangeTimes->{{3.8622554474979153`*^9, 3.862255459306686*^9}, {
3.862255543340873*^9, 3.862255548769783*^9}, {3.862255652467887*^9,
3.862255668946916*^9}, {3.862256367223724*^9, 3.862256368097184*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"a49181d5-2f4d-4740-af58-00bdd785d2fb"],
Cell[BoxData[
RowBox[{
RowBox[{"Cos", "[", "a", "]"}], "-",
RowBox[{"Cos", "[", "b", "]"}]}]], "Output",
CellChangeTimes->{{3.8622556485129128`*^9, 3.8622556539158583`*^9},
3.862255718986579*^9, 3.8622563697554207`*^9, 3.862257198380835*^9},
CellLabel->"Out[21]=",ExpressionUUID->"a38b48dd-bcfd-4333-9fde-6a572f0da09d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"integrate$new$formula", "[",
RowBox[{
RowBox[{
RowBox[{"1", "/",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+", "#"}], ")"}], "^", "2"}]}], "&"}], ",", "a", ",",
"b"}], "]"}]], "Input",
CellChangeTimes->{{3.8622554474979153`*^9, 3.862255459306686*^9}, {
3.862255543340873*^9, 3.862255548769783*^9}, {3.862255652467887*^9,
3.862255668946916*^9}, {3.862256367223724*^9, 3.862256414129559*^9}, {
3.862256509453094*^9, 3.862256520912312*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"8311ce9c-f84a-45d4-8f08-16da6d734c63"],
Cell[BoxData[
RowBox[{
FractionBox["1",
RowBox[{"1", "+", "a"}]], "-",
FractionBox["1",
RowBox[{"1", "+", "b"}]]}]], "Output",
CellChangeTimes->{{3.8622564106359587`*^9, 3.8622564147003517`*^9},
3.862256528530334*^9, 3.8622572043918943`*^9},
CellLabel->"Out[22]=",ExpressionUUID->"8e0a9bd2-ebaf-48b7-bd9e-a2c873c392bb"]
}, Open ]]
},
WindowSize->{1054, 962},
WindowMargins->{{264, Automatic}, {Automatic, 0}},
ShowAutoSpellCheck->False,
Magnification:>1.25 Inherited,
FrontEndVersion->"13.0 for Mac OS X x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"c3478de9-43fd-4e09-b4ad-3a853a940db0"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 412, 8, 73, "Text",ExpressionUUID->"049e1728-6fd8-4382-85d2-48d6b171e0cb"],
Cell[973, 30, 144, 3, 44, "Text",ExpressionUUID->"42ce3df5-4154-4a83-a056-8218bd54ef55"],
Cell[1120, 35, 6472, 112, 107, "Text",ExpressionUUID->"10352c39-4ae3-4947-a5d6-44ce04adf910"],
Cell[7595, 149, 813, 21, 73, "Text",ExpressionUUID->"357eecee-b2fa-4f9b-bbef-ef60d3e79d56"],
Cell[8411, 172, 662, 18, 46, "Text",ExpressionUUID->"e1698654-4dac-44c9-8c47-6ba9be456c6d"],
Cell[9076, 192, 728, 21, 55, "Input",ExpressionUUID->"c1100d61-4933-44b1-8af3-9a2abd5afbfb",
Evaluatable->False],
Cell[9807, 215, 370, 11, 44, "Text",ExpressionUUID->"77de8ed4-3968-476d-9d5a-db7f284fe937"],
Cell[10180, 228, 892, 24, 55, "Input",ExpressionUUID->"6749eb24-91c4-4d76-a97b-13c8213245ab",
Evaluatable->False],
Cell[11075, 254, 269, 4, 44, "Text",ExpressionUUID->"9f78aede-944b-4356-a279-e7d8f78e9a56",
Evaluatable->False],
Cell[CellGroupData[{
Cell[11369, 262, 458, 10, 50, "Input",ExpressionUUID->"4825b83c-d86d-41bf-982d-dbb9332975d5"],
Cell[11830, 274, 1660, 48, 81, "Output",ExpressionUUID->"cc649ff8-b9b8-4480-b923-84c0a85553d9"]
}, Open ]],
Cell[13505, 325, 676, 17, 54, "Text",ExpressionUUID->"e4d2d238-e8c9-4862-b7e9-3fc5c3b67740",
Evaluatable->False],
Cell[CellGroupData[{
Cell[14206, 346, 493, 12, 62, "Input",ExpressionUUID->"7d50efc0-f0bd-4846-ab43-23d71fd07be8"],
Cell[14702, 360, 4214, 92, 77, "Output",ExpressionUUID->"1e545889-134c-4b16-955b-e622fb56cd34"]
}, Open ]],
Cell[CellGroupData[{
Cell[18953, 457, 212, 3, 37, "Input",ExpressionUUID->"22d61034-0fc6-439d-996a-c08db27bb9ee"],
Cell[19168, 462, 861, 29, 62, "Output",ExpressionUUID->"84e01a15-775e-4ac9-971a-1f3b7a22959d"]
}, Open ]],
Cell[20044, 494, 711, 16, 73, "Text",ExpressionUUID->"824f3013-5515-435f-a6f2-cad7272c5604"],
Cell[CellGroupData[{
Cell[20780, 514, 1210, 35, 65, "Input",ExpressionUUID->"0c740ecb-5a99-4618-8069-35b05a400cfb"],
Cell[21993, 551, 1083, 31, 64, "Output",ExpressionUUID->"6c6cc61d-ad69-4b00-943f-ae9be34a56ed"]
}, Open ]],
Cell[23091, 585, 568, 13, 44, "Text",ExpressionUUID->"4a8a1492-2e77-4a48-81c6-36b543e6d8fb"],
Cell[CellGroupData[{
Cell[23684, 602, 487, 12, 37, "Input",ExpressionUUID->"dbb43103-79c2-42f3-8fd3-06e64e422de2"],
Cell[24174, 616, 228, 4, 42, "Output",ExpressionUUID->"aabd3943-d1f0-41a7-86c7-ece945d9c8cc"]
}, Open ]],
Cell[24417, 623, 378, 12, 44, "Text",ExpressionUUID->"bd3fe8bc-5d37-4321-a66e-63642c9c0b28"],
Cell[CellGroupData[{
Cell[24820, 639, 687, 18, 37, "Input",ExpressionUUID->"8e7cffd1-ca19-4d5b-a188-ce20fa9224c2"],
Cell[25510, 659, 256, 5, 42, "Output",ExpressionUUID->"95903e3a-e990-4b32-a7d0-65aa4efd9750"]
}, Open ]],
Cell[25781, 667, 219, 5, 44, "Text",ExpressionUUID->"250bd61a-7854-4cb0-9d86-6ddde142eaae"],
Cell[CellGroupData[{
Cell[26025, 676, 971, 31, 65, "Input",ExpressionUUID->"afa2413d-baac-4e96-9cf6-200d0cca4c70"],
Cell[26999, 709, 588, 16, 43, "Output",ExpressionUUID->"251f8c96-2493-424a-a695-97acb9ca7b09"]
}, Open ]],
Cell[CellGroupData[{
Cell[27624, 730, 875, 25, 62, "Input",ExpressionUUID->"8c592684-50b6-4372-bf90-523214c07514"],
Cell[28502, 757, 390, 9, 42, "Output",ExpressionUUID->"1cfb5a7c-e8d1-415a-8616-716f68e25e24"]
}, Open ]],
Cell[CellGroupData[{
Cell[28929, 771, 592, 14, 40, "Input",ExpressionUUID->"d6a3d65a-1ff2-4207-bc97-bf755c36930f"],
Cell[29524, 787, 604, 18, 83, "Output",ExpressionUUID->"e11b2eae-8a9f-40ab-b050-e0956c9c1a13"]
}, Open ]],
Cell[30143, 808, 381, 11, 44, "Text",ExpressionUUID->"5d2dfadc-f93b-4147-879d-13e3e30fa13b"],
Cell[CellGroupData[{
Cell[30549, 823, 300, 6, 37, "Input",ExpressionUUID->"995c26ba-88f6-44b4-8c36-0a204ab181f4"],
Cell[30852, 831, 1982, 57, 83, "Output",ExpressionUUID->"fbde01e1-3761-4033-9a50-c53d72688bf6"]
}, Open ]],
Cell[CellGroupData[{
Cell[32871, 893, 294, 6, 37, "Input",ExpressionUUID->"49ae1b84-12f1-4725-b46c-ddbbc07d7be3"],
Cell[33168, 901, 384, 12, 73, "Output",ExpressionUUID->"085fbc59-d8e2-4c44-acb4-b9d18f2f6446"]
}, Open ]],
Cell[33567, 916, 472, 11, 45, "Text",ExpressionUUID->"e547ff67-ef58-4638-a065-32580ecd19b1"],
Cell[CellGroupData[{
Cell[34064, 931, 1257, 40, 120, "Input",ExpressionUUID->"f7cab4e9-007c-46ba-96ae-0943a7a7846a"],
Cell[35324, 973, 232, 4, 42, "Output",ExpressionUUID->"ad93d5f4-0855-4368-9a14-992214ba959f"]
}, Open ]],
Cell[35571, 980, 228, 4, 44, "Text",ExpressionUUID->"d6d4c9e9-b186-40c8-baa0-60ae78723bd7"],
Cell[35802, 986, 801, 14, 102, "Text",ExpressionUUID->"d983c46c-eaf0-459c-99f6-3caaca9aa780"],
Cell[36606, 1002, 382, 8, 73, "Text",ExpressionUUID->"cdcdf279-7632-4a26-a4c8-0c78343ae6cf"],
Cell[CellGroupData[{
Cell[37013, 1014, 1108, 32, 65, "Input",ExpressionUUID->"aecdfe0a-bbe5-4d52-809e-2ee52abf0e90"],
Cell[38124, 1048, 4618, 124, 133, "Output",ExpressionUUID->"82ecac53-482c-4dac-b167-945f1cfe737d"]
}, Open ]],
Cell[CellGroupData[{
Cell[42779, 1177, 291, 5, 37, "Input",ExpressionUUID->"0a3d20fe-4635-430f-b92d-5dab7b66b324"],
Cell[43073, 1184, 3040, 104, 116, "Output",ExpressionUUID->"e4e4ead5-8c3d-4956-bd1f-d4d72247eba8"]
}, Open ]],
Cell[CellGroupData[{
Cell[46150, 1293, 209, 3, 37, "Input",ExpressionUUID->"9f2a1800-a11b-4f23-a683-e6d34b6515ef"],
Cell[46362, 1298, 2060, 70, 64, "Output",ExpressionUUID->"ff265dcd-101c-4b48-b8d9-c012090021da"]
}, Open ]],
Cell[CellGroupData[{
Cell[48459, 1373, 593, 15, 37, "Input",ExpressionUUID->"ce834488-f2e0-427a-b643-95324c00d6e8"],
Cell[49055, 1390, 2030, 69, 66, "Output",ExpressionUUID->"fadb2d90-584e-45db-8003-03b52ffe8ebd"]
}, Open ]],
Cell[CellGroupData[{
Cell[51122, 1464, 618, 18, 64, "Input",ExpressionUUID->"f9cd7f07-bdf1-4928-8520-1649ec076e33"],
Cell[51743, 1484, 289, 7, 59, "Output",ExpressionUUID->"f6574560-b074-4a74-95f0-7a49d075781b"]
}, Open ]],
Cell[52047, 1494, 336, 7, 44, "Text",ExpressionUUID->"0dfff74d-0062-4072-86d9-fc35b24277eb"],
Cell[52386, 1503, 1131, 25, 69, "Input",ExpressionUUID->"cf3bae6a-3f17-4a46-8ea2-2d71f9558092"],
Cell[53520, 1530, 2747, 67, 255, "Input",ExpressionUUID->"f3feb4e2-181f-4d03-9f20-74d0ef6340ee"],
Cell[56270, 1599, 147, 3, 44, "Text",ExpressionUUID->"cc460eb9-11e2-4a68-b359-d07b836aaada"],
Cell[CellGroupData[{
Cell[56442, 1606, 298, 6, 37, "Input",ExpressionUUID->"ae08714d-ea28-4dea-86c3-07d90fab9e9f"],
Cell[56743, 1614, 484, 11, 59, "Output",ExpressionUUID->"cf3bc7a3-0fc9-45b5-9905-6a4657bc1a16"]
}, Open ]],
Cell[CellGroupData[{
Cell[57264, 1630, 400, 6, 37, "Input",ExpressionUUID->"a49181d5-2f4d-4740-af58-00bdd785d2fb"],
Cell[57667, 1638, 331, 6, 42, "Output",ExpressionUUID->"a38b48dd-bcfd-4333-9fde-6a572f0da09d"]
}, Open ]],
Cell[CellGroupData[{
Cell[58035, 1649, 576, 13, 37, "Input",ExpressionUUID->"8311ce9c-f84a-45d4-8f08-16da6d734c63"],
Cell[58614, 1664, 339, 8, 60, "Output",ExpressionUUID->"8e0a9bd2-ebaf-48b7-bd9e-a2c873c392bb"]
}, Open ]]
}
]
*)
_______________________________________________
DMUG Deutschsprachiges Mathematica-Forum demug@XXXXXXX.ch
http://www.mathematica.ch/mailman/listinfo/demug
Archiv: http://www.mathematica.ch/archiv.html