Liebe Mathematica-User,
im beigefuegten Problem wird versucht,
mit NDSolve eine gewoehnliche
Differentialgleichung zu loesen.
Ungluecklicherweise tritt die gesuchte
Funktion in der Exponentialfunktion
auf und in dem Moment, in dem man die
Konstante a mit dem unverdaechtigen Wert
0.0124715 als Faktor im Argument der
Exponentialfunktioneinfuehrt, antwortet Mathematica
mit der Fehlermeldung:
NDSolve::ndnum : The right-hand side of the differential
equation does not evaluate to a number at Theta == 0
Wirft man die Konstante a wieder heraus, kann Mathematica
das Problem anstandslos loesen.
Woran liegt das, bzw. wie kann man das Problem umgehen?
Mit freundlichen Gruessen,
Rudolf Schuch
c/o
ZIC/I L511
BASF AG
67056 Ludwigshafen
Tel.: 0621/6056006
(***********************************************************************
Mathematica-Compatible Notebook
This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook
starts with the line of stars above.
To get the notebook into a Mathematica-compatible application, do one of
the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@XXXXXXX.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
***********************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 14801, 486]*)
(*NotebookOutlinePosition[ 15436, 509]*)
(* CellTagsIndexPosition[ 15392, 505]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
\(R\ = \ 8.31434\),
\(deltaTad\ = \ 105\),
\(EA\ = \ 70000\),
\(a\ = \ R\ \.03 deltaTad/EA\),
\(TW\ = \ 100\),
\(b\ = \ TW\ R\ /EA\),
\(theta0\ = \ 0.2\),
\(d\ = \ Exp[a\ theta0\ + b + 1/\((\ a\ theta0\ + \ b)\)]\n\)}],
"Input"],
Cell[BoxData[
StyleBox["8.31433999999999961`",
StyleBoxAutoDelete->True,
PrintPrecision->6]], "Output"],
Cell[BoxData[
\(105\)], "Output"],
Cell[BoxData[
\(70000\)], "Output"],
Cell[BoxData[
\(0.0124715099999999989`\ \.03\)], "Output"],
Cell[BoxData[
\(100\)], "Output"],
Cell[BoxData[
\(0.0118776285714285734`\)], "Output"],
Cell[BoxData[
StyleBox["0.2`",
StyleBoxAutoDelete->True,
PrintPrecision->1]], "Output"],
Cell[BoxData[
\(E\^\(\(0.0118776285714285734`\[InvisibleSpace]\) +
1\/\(\(0.0118776285714285734`\[InvisibleSpace]\) +
0.00249430199999999979`\ \.03\) +
0.00249430199999999979`\ \.03\)\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
\(Da\ = \ 1\),
\(NTU\ = \ 4\)}], "Input"],
Cell[BoxData[
\(1\)], "Output"],
Cell[BoxData[
\(4\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(\(NDSolve[{
\(theta'\)[Theta]\ + Exp\ [\((a\ \ theta[Theta])\)]\ + \
NTU\ theta[Theta]\ == \ 0, theta[0]\ == \ theta0},
theta, {Theta, 0, 1}]\ \)\)], "Input"],
Cell[BoxData[
\(NDSolve::"ndnum" \( : \ \)
"The right-hand side of the differential equation does not evaluate to \
a number at \!\(Theta\) == \!\(0.`\)."\)], "Message"],
Cell[BoxData[
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
\(E\^\(0.0124715099999999989`\ \.03\ theta[Theta]\)\), "+",
\(4\ theta[Theta]\), "+",
RowBox[{
SuperscriptBox["theta", "\[Prime]",
MultilineFunction->None], "[", "Theta", "]"}]}], "==",
"0"}], ",",
RowBox[{\(theta[0]\), "==",
StyleBox["0.2`",
StyleBoxAutoDelete->True,
PrintPrecision->1]}]}], "}"}], ",", "theta", ",",
\({Theta, 0, 1}\)}], "]"}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(a\)], "Input"],
Cell[BoxData[
\(0.0124715099999999989`\ \.03\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(Plot[Evaluate[theta[Theta]\ /. \ %\ ], \ {\ Theta, 0, 1}]\)], "Input"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.952381 0.309554 1.46883 [
[.21429 .29705 -9 -9 ]
[.21429 .29705 9 0 ]
[.40476 .29705 -9 -9 ]
[.40476 .29705 9 0 ]
[.59524 .29705 -9 -9 ]
[.59524 .29705 9 0 ]
[.78571 .29705 -9 -9 ]
[.78571 .29705 9 0 ]
[.97619 .29705 -3 -9 ]
[.97619 .29705 3 0 ]
[.01131 .01579 -24 -4.5 ]
[.01131 .01579 0 4.5 ]
[.01131 .16267 -24 -4.5 ]
[.01131 .16267 0 4.5 ]
[.01131 .45644 -18 -4.5 ]
[.01131 .45644 0 4.5 ]
[.01131 .60332 -18 -4.5 ]
[.01131 .60332 0 4.5 ]
[ 0 0 0 0 ]
[ 1 .61803 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 g
.25 Mabswid
[ ] 0 setdash
.21429 .30955 m
.21429 .3158 L
s
[(0.2)] .21429 .29705 0 1 Mshowa
.40476 .30955 m
.40476 .3158 L
s
[(0.4)] .40476 .29705 0 1 Mshowa
.59524 .30955 m
.59524 .3158 L
s
[(0.6)] .59524 .29705 0 1 Mshowa
.78571 .30955 m
.78571 .3158 L
s
[(0.8)] .78571 .29705 0 1 Mshowa
.97619 .30955 m
.97619 .3158 L
s
[(1)] .97619 .29705 0 1 Mshowa
.125 Mabswid
.07143 .30955 m
.07143 .3133 L
s
.11905 .30955 m
.11905 .3133 L
s
.16667 .30955 m
.16667 .3133 L
s
.2619 .30955 m
.2619 .3133 L
s
.30952 .30955 m
.30952 .3133 L
s
.35714 .30955 m
.35714 .3133 L
s
.45238 .30955 m
.45238 .3133 L
s
.5 .30955 m
.5 .3133 L
s
.54762 .30955 m
.54762 .3133 L
s
.64286 .30955 m
.64286 .3133 L
s
.69048 .30955 m
.69048 .3133 L
s
.7381 .30955 m
.7381 .3133 L
s
.83333 .30955 m
.83333 .3133 L
s
.88095 .30955 m
.88095 .3133 L
s
.92857 .30955 m
.92857 .3133 L
s
.25 Mabswid
0 .30955 m
1 .30955 L
s
.02381 .01579 m
.03006 .01579 L
s
[(-0.2)] .01131 .01579 1 0 Mshowa
.02381 .16267 m
.03006 .16267 L
s
[(-0.1)] .01131 .16267 1 0 Mshowa
.02381 .45644 m
.03006 .45644 L
s
[(0.1)] .01131 .45644 1 0 Mshowa
.02381 .60332 m
.03006 .60332 L
s
[(0.2)] .01131 .60332 1 0 Mshowa
.125 Mabswid
.02381 .04516 m
.02756 .04516 L
s
.02381 .07454 m
.02756 .07454 L
s
.02381 .10392 m
.02756 .10392 L
s
.02381 .13329 m
.02756 .13329 L
s
.02381 .19205 m
.02756 .19205 L
s
.02381 .22142 m
.02756 .22142 L
s
.02381 .2508 m
.02756 .2508 L
s
.02381 .28018 m
.02756 .28018 L
s
.02381 .33893 m
.02756 .33893 L
s
.02381 .36831 m
.02756 .36831 L
s
.02381 .39768 m
.02756 .39768 L
s
.02381 .42706 m
.02756 .42706 L
s
.02381 .48581 m
.02756 .48581 L
s
.02381 .51519 m
.02756 .51519 L
s
.02381 .54457 m
.02756 .54457 L
s
.02381 .57394 m
.02756 .57394 L
s
.25 Mabswid
.02381 0 m
.02381 .61803 L
s
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
.5 Mabswid
.02381 .60332 m
.06244 .49471 L
.10458 .39941 L
.14415 .3274 L
.18221 .27096 L
.22272 .22202 L
.26171 .1837 L
.30316 .1506 L
.34309 .12473 L
.3815 .10438 L
.42237 .0867 L
.46172 .07282 L
.49955 .06186 L
.53984 .05229 L
.57861 .04476 L
.61984 .03823 L
.65954 .0331 L
.69774 .02905 L
.73838 .02552 L
.77751 .02275 L
.81909 .02034 L
.85916 .01846 L
.89771 .01698 L
.93871 .01568 L
.97619 .01472 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 177.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0, 1}},
ImageCache->GraphicsData["Bitmap", "\<\
CF5dJ6E]HGAYHf4PAg9QL6QYHg<PAVmbKF5d0`40004P0000/@P10`4000010?ooo`0007=cLjjb`k9=
NYM1Imb]`ULU>oooojjb`i>GYMcNiEePJ@0009O2mX2TdM?Une=ZQ`000?ogjMSAa/c5^YVDR`0009BD
U:f][B4Q8Kfm_MkNgV=SHol0003o0000oooo003oool0od92@^7QhLS8b:n_[iJFUWemOFATI4];Bc8b
<_ogjJ^[Zk[Zf]_Kfclo?ifP[eMIHM7EjGmoOda<C000?`00O`00_`0o000o?`0oO`0o_`0oo`1o001o
?`1oO`1o_`1oo`2o002o?`2oO`2o_`2oo`3o?`3oO`3o_cl003l0?cl0Ocl0_cl0oclo03loOclo_clo
ocmo03mo?cmoOcmo_cmoocno03no?cnoOcno_cnoocoo03oo?cooOcoo_cooogl007l0?gl0Ogl0_gl0
oglo07lo?gloOglo_gloogmo07mo?gmo_gmoogno07no?gnoOgno_gnoogoo07oo?gooOgoo_goookl0
0;l0?kl0Okl0_kl0oklo0;lo?kloOklo_klookmo0;mo?kmoOkmo_kmookno0;no?knoOkno_knookoo
0;oo?kooOkoo_kooool0?ol0Ool0_olo0?lo?oloOolo_olooomo0?mo?omoOomo_omooono0?no?ono
Oono_onooooo?oooOooo_mgNiUiPJIBGYZ0Pl=WIfNo_kgalO9VI09VI<iVIIYVIVIVIc9VIoiW<09W<
<iW<IYW<VIW<c9W<oiWo09Wo<iWoIYWoVIWoc9Wool`00<`0<l`0I/`0VL`0c<`0ol`c0<`c<l`cI/`c
VL`cc<`colaV0<aV<laVI/aVVLaVc<aVolbI0<bI<lbII/bIVLbIc<bIolc<0<c<<lc<I/c<VLc<c<c<
olco0<co<lcoI/coVLcoc<coool0<ol0I_l0VOl0c?lc0?lc<olcI_lcVOlcc?lcoomV0?mV<omVI_mV
VOmVc?mVoonI0?nI<onII_nIVOnIc?nIooo<0?o<<oo<I_l08@000?l08@000?l08@000?l08@000?l0
8@000?l08@0001/000<10000o`0300006`000`40003o00<0000K00030@000?l00`0000P00P440003
0@000080104400030@000?l00`0000L000@1000120000`4000050081h@0K0@L0000700040@000@T0
00<1000010000`40003;01D18P000003004100810P001040004:00030@0000<000<10000]P0E0CL0
000700040@000@/000<100000P000`40002[00/1C00000L000@1000120001040004400030@000:@0
1`5G000020020@X00P4500030@0009h01P5N00006`000`40002I00D1I00001/000<10000T`060FT0
000K0081S`050Fl0000K00030@0008T01@5d00006`000`40002400D1N@0001/000<10000OP060Gh0
000K00030@0007X0106400006`000`40001f00@1R00001/000<10000L`030H`0000K00030@000700
0`6?00006`020Fl00P6B00006`000`40001[00<1U00001/000<10000J@020IL0000K00030@0006H0
0`6I00006`000`40001S00<1W00001/000<10000H@020Il0000K00030@0005h00`6Q00006`020Ed0
0P6T00006`000`40001J0081YP0001/000<10000F0020JP0000K00030@0005L000<10000Z00001/0
00<10000E@020J/0000K00030@0005<00P6]00006`000`40001B00030@000:d0000K00030@000500
0P6`00006`020E0000<10000/00001/000<10000C@020K<0000K00030@0004/00P6e00006`000`40
001:00030@000;D0000K00030@0004P00P6h00006`000`40001700030@000;P0000K00030@0004H0
00<10000^@0000P00P4400030@000080104400030@0004@00P6l00001`001040004:00030@0000<0
0P5400030@000;`0000700040@000@X000<100000`000`40001200030@000;d000000`010@020@80
00@100012P000`40000300030@00044000<10000_P0000L000@100012P000`40000300030@000400
00<10000_`0000L000@1000120030@D000<10000?P020L80000800812`000`40000300030@0003d0
00<10000`P0001/000<10000?0000`40003300006`000`40000k00030@000<@0000K0081>`000`40
003500006`000`40000i00030@000<H0000K00030@0003P000<10000a`0001/000<10000=`000`40
003800006`000`40000f00030@000<T0000K00030@0003D000<10000bP0001/000<10000=0000`40
003;00006`000`40000c00030@000<`0000K0081<`000`40003=00006`000`40000a00030@000<h0
000K00030@00030000<10000c`0001/000<10000;`000`40003@00006`000`40000_00030@000=00
000K00030@0002h000<10000d@0001/000<10000;@000`40003B00006`020Bd000<10000d`0001/0
00<10000:`000`40003D00006`000`40000Z00030@000=D0000K00030@0002X000<10000e@0001/0
00<10000:@000`40003F00006`000`40000X00030@000=L0000K00030@0002L000<10000f00001/0
00<100009P0010400@4400030@000080104T008110000`40000400030@0002<00P4400030@0000<0
0P4T008110000`4000030081:P040@H0000K00819`020@8000<100001P000`40000T00040@000@X0
00<100008P001040004800040@000B8000@1000120001040004[00030@0000D0000K00030@0002D0
00<100400P000`40000700030@0002<000@100011`050B<000@1000120001040004R00040@000@P0
00@10001:`000`40000500006`000`40000T00040@000@8000<1000020000`40000R00040@000@L0
00@1000190001040004800<18`00104000490081;0000`40000500006`000`40000T00040@000@80
00<100002@000`40000Q00040@000@P000<1004090001040004800030@0002<000@1000120001040
004[00030@0000D0000K00030@0002<000D100000@0200030@0000H000@100018`00104000490081
90001040004800030@0002<000@1000120001040004Y00<11`0001/000<100008P000`4000030081
2P020BD00P4;00030@0002<00P4:00<18`020@X00P4/00030@0000D0000K00030@00028000<10000
g@0001/000<100008@000`40003N0000503o0@d1000K00030@0000T000<100002P000`4000070004
0@000@/000<100002P000`40000:00030@0000T000<100002P000`40000:00030@0000T000<10000
2P000`40000:00030@0000T000<100002P000`40000:00030@0000T000<100002P000`40000:0003
0@0000T000<100002P000`40000500006`000`40000O00030@0000d000<10000<0000`40000`0003
0@0002l000<10000<0000`40000500006`000`40000N00030@000>40000K00030@0001h000<10000
h@0001/000<100007@000`40003R00006`000`40000L00030@000><0000K00030@0001`000<10000
h`0001/00P4L00030@000>@0000K00030@0001/000<10000i00001/000<100006P000`40003U0000
6`000`40000J00030@000>D0000K00030@0001T000<10000iP0001/000<1000060000`40003W0000
6`000`40000H00030@000>L0000K00030@0001L000<10000j00001/00P4H00030@000>P0000K0003
0@0001H000<10000j@0001/000<100005@000`40003Z00006`000`40000E00030@000>X0000K0003
0@0001@000<10000j`0001/000<1000050000`40003[00006`000`40000C00030@000>`0000K0081
50000`40003/00006`000`40000B00030@000>d0000K00030@00018000<10000k@0001/000<10000
4@000`40003^00006`000`40000A00030@000>h0000K00030@00010000<10000k`0001/000<10000
40000`40003_00006`000`40000?00030@000?00000K008140000`40003`00006`000`40000>0003
0@000?40000K00030@0000h000<10000l@0001/000<100003P000`40003a00006`000`40000=0003
0@000?80000K00030@0000d000<10000lP0001/000<1000030000`40003c000020020@@000<10000
0P040@@000<1000030000`40003c00001`001040004:00030@0000<00P4<00030@000?@000070004
0@000@X000<100000`000`40000;00030@000?@0000700040@000@X000<100000`000`40000;0003
0@000?@0000700040@000@X000<100000`000`40000:00030@000?D0000700040@000@P00`450003
0@0000X000<10000m@0000P00P4;00030@0000<000<100002@000`40003f00006`000`4000090003
0@000?H0000K00030@0000P000<10000m`0001/00P4900030@000?L0000K00030@0000L000<10000
n00001/000<100001`000`40003h00006`000`40000700030@000?P0000K00030@0000H000<10000
n@0001/000<100001P000`40003i00006`000`40000600030@000?T0000K00030@0000D000<10000
nP0001/00P4600030@000?X0000K00030@0000D000<10000nP0001/000<1000010000`40003k0000
6`000`40000400030@000?/0000K00030@0000@000<10000n`0001/000<100000`000`40003l0000
6`000`40000300030@000?`0000K00030@0000<000<10000o00001/00P4300030@000?d0000K0003
0@00008000<10000o@0001/000D100000@3o0040000K00050@000040o`0100006`001@4000010?l0
0@0001/000@10001o`0200006`001040007o0080000K008100<00@00o`0100006`000`400@3o00<0
000K00030@010?l00`0001/000<10040o`0300006`020Ol0100001/00P7o00@0000K0081o`040000
20020@@000<100000P040@@000<10000o`0300001`001040004800030@0000D00P7o00@000070004
0@000@T000<1000010000`40003o00<0000700040@000@X000<100000`000`40003o00<000070004
0@000@/000<100000P000`40003o00<0000700040@000@P000@1000110000`40003o00<000080081
2P020Ol02`000?l08@000?l08@000?l08@000?l08@000?l08@000001\
\>"],
ImageRangeCache->{{{0, 287}, {176.938, 0}} -> {-0.107864, -0.226426,
0.00394728, 0.00255939}}],
Cell[BoxData[
TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\),
False,
Editable->False]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(\(\ Exp[\ Da\ a\ Exp[\(-1\)/\((a\ theta[Theta]\ + \ b)\)]\ Theta]\)\)],
"Input"],
Cell[BoxData[
\(E\^\(0.0124715099999999989`\ \.03\
E\^\(-\(1
\/\(\(0.0118776285714285734`\[InvisibleSpace]\) +
0.0124715099999999989`\ \.03\ theta[Theta]\)\)\)\ Theta
\)\)], "Output"]
}, Open ]]
},
FrontEndVersion->"X 3.0",
ScreenRectangle->{{0, 1152}, {0, 900}},
WindowSize->{520, 600},
WindowMargins->{{64, Automatic}, {Automatic, 55}}
]
(***********************************************************************
Cached data follows. If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of
the file. The cache data will then be recreated when you save this file
from within Mathematica.
***********************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[1731, 51, 295, 9, 155, "Input"],
Cell[2029, 62, 119, 3, 27, "Output"],
Cell[2151, 67, 37, 1, 27, "Output"],
Cell[2191, 70, 39, 1, 27, "Output"],
Cell[2233, 73, 62, 1, 27, "Output"],
Cell[2298, 76, 37, 1, 27, "Output"],
Cell[2338, 79, 56, 1, 27, "Output"],
Cell[2397, 82, 103, 3, 27, "Output"],
Cell[2503, 87, 232, 4, 36, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2772, 96, 67, 2, 43, "Input"],
Cell[2842, 100, 35, 1, 27, "Output"],
Cell[2880, 103, 35, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2952, 109, 210, 4, 59, "Input"],
Cell[3165, 115, 180, 3, 39, "Message"],
Cell[3348, 120, 670, 17, 61, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4055, 142, 34, 1, 27, "Input"],
Cell[4092, 145, 62, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4191, 151, 91, 1, 27, "Input"],
Cell[4285, 154, 9984, 310, 186, 3120, 221, "GraphicsData",
"PostScript", "Graphics"],
Cell[14272, 466, 130, 3, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[14439, 474, 104, 2, 27, "Input"],
Cell[14546, 478, 239, 5, 42, "Output"]
}, Open ]]
}
]
*)
(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)
|