Hallo,
ich wollte mir ansehen, wie sich ein relativistisches
geladenes Teilchen in einem Raum mit elektrischen und
magnetischen Feldern verhaelt. Dazu habe ich das
Mathematica (5.1) Notebook, welches auch an diese
eMail angehangen ist, geschrieben.
Darin loese ich die dreidimensionalen Bewegungsgleichung-
en des besagten Teilchens mit Hilfe der NDSolve-Funktion
von Mathematica (5.1) komponentenweise.
Jedoch bricht Mathematica seine Berechnung mit den
Standardparametern leider bei 10000 Iterationschritten ab.
Ein Aufruf von NDSolve mit "MaxSteps -> 'ESC' inf 'ESC'"
fuehrt aber nun dazu, dass der Computer ueber Wochen
beschaeftigt ist, ohne richtig voranzukommen.
Erhoeht man den Wert der Funktion EE_z[t_] (des elektrischen
Feldes in z-Richtung) auf unrealistische Werte (also von
0.003 auf 300000) so stellt Mathematica binnen kuerzester
Zeit das richtige Ergebnis dar.
Nun meine Frage:
Kann ich diesen NDSolve Algor. irgendwie fuer die
realistischen (sich im Notebook befindenden) Werte
beschleunigen??
Oder hat jemand eine andere Idee, wie ich mein Problem
loesen kann?
Vielen Dank und Gruesse aus Berlin
Hakan
--
|
| Hakan Onel
|
| phone: +49-331-7499-397, fax: +49-331-7499-352
|
| + Remark:
| Some eMail programs are not able to code/decode the special
| sign in my last name.
| My last name coded in LaTeX-notation is \"O{}nel.
|
| + Quote of the month:
| "Equations are more important to me, beause politics is for
| present, but an equation is somthing for eternity."
| (Albert Einstein)
--
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.1'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@XXXXXXX.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 16130, 329]*)
(*NotebookOutlinePosition[ 16794, 352]*)
(* CellTagsIndexPosition[ 16750, 348]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[BoxData[{
\(\(Remove["\<Global`*\>"];\)\[IndentingNewLine] (*\ <<
Graphics`Legend`\ *) \), "\[IndentingNewLine]",
\(<< \ Graphics`Graphics`\ \[IndentingNewLine] (*\ <<
Graphics`ImplicitPlot`\ *) \), "\[IndentingNewLine]",
\(<< Graphics`Colors`\[IndentingNewLine] (*<<
MathGL3d`OpenGLViewer`*) \), "\[IndentingNewLine]",
\(\($Line = \(-1\);\)\), "\[IndentingNewLine]",
\(\($TextStyle = {FontFamily \[Rule] "\<Arial\>",
FontSize \[Rule] 12};\)\)}], "Input"],
Cell[BoxData[{
\(\(Off[General::spell];\)\), "\[IndentingNewLine]",
\(\(Off[General::spell1];\)\), "\[IndentingNewLine]",
\(\(ImgX := 400;\)\), "\[IndentingNewLine]",
\(\(ImgY := 250;\)\), "\[IndentingNewLine]",
\(\(parallelcolor = Blue;\)\), "\[IndentingNewLine]",
\(\(perpendicularcolor = Red;\)\), "\[IndentingNewLine]",
\(\(xcolor = Magenta;\)\), "\[IndentingNewLine]",
\(\(ycolor = Cyan;\)\), "\[IndentingNewLine]",
\(c := 299792458\ ; \ (*\ m\/s\ *) \[IndentingNewLine]m\_e :=
9.1093826\ \ 10^\((\(-31\))\); \ (*\ kg\ *) \[IndentingNewLine]m\_p :=
1.67262171\ \ 10^\((\(-27\))\); \ (*\ kg\ *) \[IndentingNewLine]m\_n :=
1.67492728\ \ 10^\((\(-27\))\); \ (*\
kg\ *) \[IndentingNewLine]R\_Sun\ := \ 695.8\ 10^6\ ; \ (*\
m\ *) \[IndentingNewLine]M\_Sun := 1.985\ 10^30; \ (*\
kg\ *) \[IndentingNewLine]k\_B\ := 1.3806505\ 10^\((\(-23\))\); \ (*\
J/K\ *) \[IndentingNewLine]G := 6.6742\ 10^\((\(-11\))\); \ (*\
m^3\/\(kg\ s^2\)\ *) \[IndentingNewLine]\[Mu]\_0 :=
4 \[Pi]\ 10^\(-7\); (*\ \(V\ s\)\/\(A\ m\)\ *) \[IndentingNewLine]\
\[Epsilon]\_0 :=
1\/\(\[Mu]\_0\ c^2\); \ (*\ \(A\ s\)\/\(V\ m\)\ \
*) \[IndentingNewLine]q\_e := \ 1.60217653\ 10^\((\(-19\))\); \ (*\
A\ s\ *) \[IndentingNewLine]AU\ := \ 149597870691; \ (*\
m\ *) \[IndentingNewLine]On[General::spell];\), "\[IndentingNewLine]",
\(\(On[General::spell1];\)\)}], "Input"],
Cell[BoxData[
\(\(\( (*\ \(energy2velocity\ &\)\ velocity2energy\ conversion\ *) \)\(\
\[IndentingNewLine]\)\(\ \)\(vkin[Wkin_, m_] :=
0 \((\@\(2 Wkin\/m\))\)\ +
1\ c \@\( 1 - \((m\ c^2)\)^2\/\((Wkin + m\ c^2)\)^2\)\
\[IndentingNewLine]
Wkin[vkin_, m_] :=
0 \((\(1\/2\) m\ vkin^2)\) +
1\ \((\(m\ c^2\)\/\@\(1 - \((vkin\/c)\)^2\) -
m\ c^2)\)\)\)\)], "Input"],
Cell[BoxData[{
\(\(EE\_vec := {EE\_x[t], EE\_y[t],
EE\_z[t]};\)\), "\[IndentingNewLine]",
\(\(BB\_vec := {BB\_x[t], BB\_y[t],
BB\_z[t]};\)\), "\[IndentingNewLine]",
\(\(b\_vec := {b\_x[t], b\_y[t], b\_z[t]};\)\), "\[IndentingNewLine]",
\(\(e\_x := {1, 0, 0};\)\), "\[IndentingNewLine]",
\(\(e\_y := {0, 1, 0};\)\), "\[IndentingNewLine]",
\(\(e\_z := {0, 0, 1};\)\), "\[IndentingNewLine]",
\(\(EE\_x[t_] := EE\_x0\ 0;\)\), "\[IndentingNewLine]",
\(\(EE\_y[t_] := EE\_y0\ 0;\)\), "\[IndentingNewLine]",
\(\(EE\_z[t_] := 0.003;\)\), "\[IndentingNewLine]",
\(\(BB\_x[t_] := BB\_x0\ 0;\)\), "\[IndentingNewLine]",
\(\(BB\_y[t_] := BB\_y0\ 0;\)\), "\[IndentingNewLine]",
\(\(BB\_z[t_] := 0.1;\)\), "\[IndentingNewLine]",
\(\(\[Gamma]\[Gamma][t_] :=
1\/\@\(1 - \((b[t])\)\^2\);\)\), "\[IndentingNewLine]",
\(\(b[
t_] := \@\(\((b\_x[t])\)\^2 + \((b\_y[t])\)\^2 + \
\((b\_z[t])\)\^2\);\)\), "\[IndentingNewLine]",
\(\(ini01 :=
b\_x[tmin] \[Equal]
0.5\ \ vkin[25\ 1000\ q\_e, m\_e]/c;\)\), "\[IndentingNewLine]",
\(\(ini02 :=
b\_y[tmin] ==
0.5\ \ vkin[25\ 1000\ q\_e, m\_e]/c;\)\), "\[IndentingNewLine]",
\(\(ini03 := b\_z[tmin] == vkin[25\ 1000\ q\_e, m\_e]/c;\)\)}], "Input"],
Cell[BoxData[
\( (*b[t_] = 0; BB\_z[t_] := \ BB\_0; \
EE\_z[t_] := \ EE\_0;*) \)], "Input"],
Cell[BoxData[{
\(eqn01 = \[PartialD]\_t b\_x[
t] == \(1\/\(\(\ \)\(\(m\_e\)
c\ \((\[Gamma]\[Gamma][t])\)\^3\ \((1 - \((b[t])\)\^2 - \
\((b\_x[t])\)\^2)\)\)\)\) \((q\_e\ \((\
e\_x . \((EE\_vec\ +
c\ b\_vec\ \[Cross]
BB\_vec\ )\))\))\)\), "\[IndentingNewLine]",
\(eqn02 = \[PartialD]\_t b\_y[
t] == \(1\/\(\(\ \)\(\(m\_e\)
c\ \((\[Gamma]\[Gamma][t])\)\^3\ \((1 - \((b[t])\)\^2 - \
\((b\_y[t])\)\^2)\)\)\)\) \((q\_e\ \((\
e\_y . \((EE\_vec\ +
c\ b\_vec\ \[Cross]
BB\_vec\ )\))\)\ )\)\), "\[IndentingNewLine]",
\(eqn03 = \[PartialD]\_t b\_z[
t] == \(1\/\(\(\ \)\(\(m\_e\)
c\ \((\[Gamma]\[Gamma][t])\)\^3\ \((1 - \((b[t])\)\^2 - \
\((b\_z[t])\)\^2)\)\)\)\) \((q\_e\ \((\
e\_z . \((EE\_vec\ +
c\ b\_vec\ \[Cross]BB\_vec\ )\))\)\ )\)\)}], "Input"],
Cell[BoxData[{
\(\(tmin = 0;\)\), "\[IndentingNewLine]",
\(\(tmax = 100000;\)\), "\[IndentingNewLine]",
\(\(ts = {};\)\), "\[IndentingNewLine]",
\(\(stepcounter = 0;\)\), "\[IndentingNewLine]",
\(\(sol =
NDSolve[{eqn01, eqn02, eqn03, ini01, ini02, ini03}, \ {b\_x[t],
b\_y[t], b\_z[t]}, {t, tmin,
tmax}, \[IndentingNewLine]StepMonitor \[RuleDelayed] {AppendTo[
ts, {stepcounter,
t}]; \(stepcounter++\)} \
(*\(,\)\(\[IndentingNewLine]\)\(MaxSteps \[Rule] \[Infinity]\)\
*) \[IndentingNewLine]];\)\), "\[IndentingNewLine]",
\(\(Print[
stepcounter -
1, \ "\< steps were made for iteration\>"];\)\), "\
\[IndentingNewLine]",
\(\(\[Beta]\_x[\[Rho]_] :=
sol[\([1, 1, 2]\)]\ /.
t \[Rule] \[Rho];\)\), "\[IndentingNewLine]",
\(\(\[Beta]\_y[\[Rho]_] :=
sol[\([1, 2, 2]\)]\ /.
t \[Rule] \[Rho];\)\), "\[IndentingNewLine]",
\(\(\[Beta]\_z[\[Rho]_] :=
sol[\([1, 3, 2]\)]\ /.
t \[Rule] \[Rho];\)\), "\[IndentingNewLine]",
\(\(\[Beta][t_] :=
Evaluate[\@\(\((\[Beta]\_x[t])\)\^2 + \((\[Beta]\_y[t])\)\^2 + \((\
\[Beta]\_z[t])\)\^2\)];\)\), "\[IndentingNewLine]",
\(\(\[Beta]\_p[t_] :=
Evaluate[\@\(0 \((\[Beta]\_x[t])\)\^2 + 0 \((\[Beta]\_y[t])\)\^2 + \
\((\[Beta]\_z[t])\)\^2\)];\)\), "\[IndentingNewLine]",
\(\(\[Beta]\_s[t_] :=
Evaluate[\@\(\((\[Beta]\_x[t])\)\^2 + \((\[Beta]\_y[t])\)\^2 + 0 \((\
\[Beta]\_z[t])\)\^2\)];\)\)}], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"Plot", "[", "\[IndentingNewLine]",
RowBox[{\({\[IndentingNewLine]\[Beta]\_s[
t\ ], \[IndentingNewLine]\[Beta]\_x[
t], \[IndentingNewLine]\[Beta]\_y[
t], \[IndentingNewLine]\[Beta]\_p[
t], \[IndentingNewLine]\[Beta][t]\[IndentingNewLine]}\),
",", \({t, 0, Last[Last[ts]]}\), ",",
"\[IndentingNewLine]", \(PlotRange \[Rule] All\), ",",
"\[IndentingNewLine]", \(PlotStyle \[Rule] \
{\[IndentingNewLine]perpendicularcolor, \[IndentingNewLine]xcolor, \
\[IndentingNewLine]ycolor, \[IndentingNewLine]parallelcolor, \
\[IndentingNewLine]RGBColor[0, 0, 0]\[IndentingNewLine]}\), ",",
"\[IndentingNewLine]", \(ImageSize \[Rule] {ImgX, ImgY}\), ",",
"\[IndentingNewLine]",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"\"\<\!\(\*
StyleBox[\(\[Beta]\_s\),\nFontColor->RGBColor[1, 0, 0]]\) , \!\(\*
StyleBox[\(\[Beta]\_x\),\nFontColor->RGBColor[1, 0, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_y\),\nFontColor->RGBColor[0, 1, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_p\),\nFontColor->RGBColor[0, 0, 1]]\), \[Beta]\>\"",
"<>", "\"\< -- \>\"", "<>", "\"\<BField =\>\"",
"<>", \(ToString[BB\_vec]\), "<>", "\"\< T\>\"", "<>",
"\"\< -- \>\"", "<>", "\"\< EField =\>\"",
"<>", \(ToString[EE\_vec]\), "<>",
"\"\< V \!\(m\^\(-1\)\)\>\""}]}], ",",
"\[IndentingNewLine]", \(FrameLabel \[Rule] {"\<t / s\>", \
"\<\[Beta]\>"}\), ",", "\[IndentingNewLine]", \(Frame \[Rule] True\), ",",
"\[IndentingNewLine]", \(Axes \[Rule] None\)}],
"\[IndentingNewLine]", "]"}],
";"}], "\[IndentingNewLine]", \(Print["\<initial conditions: \n\>", \*"\
\"\<\!\(\[Beta]\_x\)[t = \>\"", tmin, "\< s] = \>",
N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)}], "Input"],
Cell[BoxData[{
RowBox[{
RowBox[{"LogLinearPlot", "[", "\[IndentingNewLine]",
RowBox[{\({\[IndentingNewLine]\[Beta]\_s[
t\ ], \[IndentingNewLine]\[Beta]\_x[
t], \[IndentingNewLine]\[Beta]\_y[
t], \[IndentingNewLine]\[Beta]\_p[
t], \[IndentingNewLine]\[Beta][t]\[IndentingNewLine]}\),
",", \({t, 0, Last[Last[ts]]}\), ",",
"\[IndentingNewLine]", \(PlotRange \[Rule] All\), ",",
"\[IndentingNewLine]", \(PlotStyle \[Rule] \
{\[IndentingNewLine]perpendicularcolor, \[IndentingNewLine]xcolor, \
\[IndentingNewLine]ycolor, \[IndentingNewLine]parallelcolor, \
\[IndentingNewLine]RGBColor[0, 0, 0]\[IndentingNewLine]}\), ",",
"\[IndentingNewLine]", \(ImageSize \[Rule] {ImgX, ImgY}\), ",",
"\[IndentingNewLine]",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"\"\<\!\(\*
StyleBox[\(\[Beta]\_s\),\nFontColor->RGBColor[1, 0, 0]]\) , \!\(\*
StyleBox[\(\[Beta]\_x\),\nFontColor->RGBColor[1, 0, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_y\),\nFontColor->RGBColor[0, 1, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_p\),\nFontColor->RGBColor[0, 0, 1]]\), \[Beta] \>\"",
"<>", "\"\< -- \>\"", "<>", "\"\<BField =\>\"",
"<>", \(ToString[BB\_vec]\), "<>", "\"\< T\>\"", "<>",
"\"\< -- \>\"", "<>", "\"\< EField =\>\"",
"<>", \(ToString[EE\_vec]\), "<>",
"\"\< V \!\(m\^\(-1\)\)\>\""}]}], ",",
"\[IndentingNewLine]", \(FrameLabel \[Rule] {"\<t / s\>", \
"\<\[Beta]\>"}\), ",", "\[IndentingNewLine]", \(Frame \[Rule] True\), ",",
"\[IndentingNewLine]", \(Axes \[Rule] None\)}],
"\[IndentingNewLine]", "]"}],
";"}], "\[IndentingNewLine]", \(Print["\<initial conditions: \n\>", \*"\
\"\<\!\(\[Beta]\_x\)[t = \>\"", tmin, "\< s] = \>",
N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)}], "Input"],
Cell[BoxData[{
\(\(diagram3D =
ParametricPlot3D[\[IndentingNewLine]{\[IndentingNewLine]\[Beta]\_x[
t], \[IndentingNewLine]\[Beta]\_y[
t], \[IndentingNewLine]\[Beta]\_z[t]\[IndentingNewLine]}, {t,
0, Last[Last[ts]]}, \[IndentingNewLine]PlotRange \[Rule]
All, \[IndentingNewLine]AxesLabel \[Rule] \
{\*"\"\<\!\(\[Beta]\_x\)\>\"", \*"\"\<\!\(\[Beta]\_y\)\>\"", \*"\"\<\!\(\
\[Beta]\_z\)\>\""}, \[IndentingNewLine]ImageSize \[Rule] {ImgX,
ImgY}, \[IndentingNewLine]PlotLabel -> "\<\[Beta] for \>" <> \
"\<t = \>" <> ToString[tmin] <> "\< s\>" <> "\< to \>" <> "\<t = \>" <>
ToString[tmax] <> "\< s\>" <> "\< -- \>" <> "\<BField =\>" <>
ToString[BB\_vec] <> "\< T\>" <> "\< -- \>" <> "\< EField =\>" <>
ToString[
EE\_vec] <> \*"\"\< V \
\!\(m\^\(-1\)\)\>\""\[IndentingNewLine]];\)\), "\[IndentingNewLine]",
\(\(Print["\<initial conditions: \n\>", \*"\"\<\!\(\[Beta]\_x\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)\)}], "Input"],
Cell[BoxData[{
\(\(ParametricPlot[\[IndentingNewLine]{\[Beta]\_p[t], \[Beta]\_s[t]}, {t,
tmin, Last[Last[ts]]}, \[IndentingNewLine]PlotRange \[Rule]
All, \[IndentingNewLine]PlotStyle \[Rule] \
{\[IndentingNewLine]perpendicularcolor, \[IndentingNewLine]parallelcolor, \
\[IndentingNewLine]RGBColor[0, 0,
0]\[IndentingNewLine]}, \[IndentingNewLine]ImageSize \[Rule] \
{ImgX, ImgY}, \[IndentingNewLine]PlotLabel -> "\<\[Beta] for \>" <> "\<t = \
\>" <> ToString[tmin] <> "\< s\>" <> "\< to \>" <> "\<t = \>" <>
ToString[tmax] <> "\< s\>" <> "\< -- \>" <> "\<BField =\>" <>
ToString[BB\_vec] <> "\< T\>" <> "\< -- \>" <> "\< EField =\>" <>
ToString[
EE\_vec] <> \*"\"\< V \!\(m\^\(-1\)\)\>\"", \
\[IndentingNewLine]FrameLabel \[Rule] {\*"\"\<\!\(\[Beta]\_p\)=\!\(\[Beta]\_z\
\)\>\"", \*"\"\<\!\(\[Beta]\_s\)=\!\(\@\((\[Beta]\_x\^2 + \
\[Beta]\_y\^2)\)\)\>\""}, \[IndentingNewLine]Frame \[Rule]
True, \[IndentingNewLine]Axes \[Rule]
None\[IndentingNewLine]];\)\), "\[IndentingNewLine]",
\(\(Print["\<initial conditions: \n\>", \*"\"\<\!\(\[Beta]\_x\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>",
N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)\)}], "Input"]
},
FrontEndVersion->"5.1 for Microsoft Windows",
ScreenRectangle->{{0, 1024}, {0, 685}},
WindowSize->{702, 651},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
ShowSelection->True
]
(*******************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of the file. The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1754, 51, 522, 9, 170, "Input"],
Cell[2279, 62, 1485, 24, 483, "Input"],
Cell[3767, 88, 415, 9, 168, "Input"],
Cell[4185, 99, 1332, 26, 379, "Input"],
Cell[5520, 127, 102, 2, 30, "Input"],
Cell[5625, 131, 1016, 20, 120, "Input"],
Cell[6644, 153, 1563, 34, 348, "Input"],
Cell[8210, 189, 2334, 40, 558, "Input"],
Cell[10547, 231, 2344, 40, 558, "Input"],
Cell[12894, 273, 1538, 25, 358, "Input"],
Cell[14435, 300, 1691, 27, 424, "Input"]
}
]
*)
(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)