DMUG-Archiv 2005

Frühere   Chronologischer Index   Spätere
Vorherige   Thematischer Index   Nächste

NDSolve -> Mathematica braucht Ewigkeiten. Laesst sich das beschleunigen???

Hallo,

 ich wollte mir ansehen, wie sich ein relativistisches
 geladenes Teilchen in einem Raum mit elektrischen und
 magnetischen Feldern verhaelt. Dazu habe ich das 
 Mathematica (5.1) Notebook, welches auch an diese
 eMail angehangen ist, geschrieben.

 Darin loese ich die dreidimensionalen Bewegungsgleichung-
 en des besagten Teilchens mit Hilfe der NDSolve-Funktion 
 von Mathematica (5.1) komponentenweise. 
 Jedoch bricht Mathematica seine Berechnung mit den 
 Standardparametern leider bei 10000 Iterationschritten ab.
 Ein Aufruf von NDSolve mit "MaxSteps -> 'ESC' inf 'ESC'" 
 fuehrt aber nun dazu, dass der Computer ueber Wochen 
 beschaeftigt ist, ohne richtig voranzukommen.

 Erhoeht man den Wert der Funktion EE_z[t_] (des elektrischen
 Feldes in z-Richtung) auf unrealistische Werte (also von 
 0.003 auf 300000) so stellt Mathematica binnen kuerzester 
 Zeit das richtige Ergebnis dar.
 
 Nun meine Frage:

  Kann ich diesen NDSolve Algor. irgendwie fuer die 
  realistischen (sich im Notebook befindenden) Werte 
  beschleunigen??
  Oder hat jemand eine andere Idee, wie ich mein Problem
  loesen kann?

Vielen Dank und Gruesse aus Berlin

 Hakan

-- 
|
| Hakan Onel
|
| phone: +49-331-7499-397, fax: +49-331-7499-352
|
|  + Remark:
|    Some eMail programs are not able to code/decode the special
|    sign in my last name. 
|    My last name coded in LaTeX-notation is \"O{}nel.
|
|  + Quote of the month:
|    "Equations are more important to me, beause politics is for
|     present, but an equation is somthing for eternity."
|                                                   (Albert Einstein)
--
(************** Content-type: application/mathematica **************
                     CreatedBy='Mathematica 5.1'

                    Mathematica-Compatible Notebook

This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.

To get the notebook into a Mathematica-compatible application, do
one of the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the
  application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info@XXXXXXX.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
*******************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     16130,        329]*)
(*NotebookOutlinePosition[     16794,        352]*)
(*  CellTagsIndexPosition[     16750,        348]*)
(*WindowFrame->Normal*)



Notebook[{
Cell[BoxData[{
    \(\(Remove["\<Global`*\>"];\)\[IndentingNewLine] (*\ << 
        Graphics`Legend`\ *) \), "\[IndentingNewLine]", 
    \(<< \ Graphics`Graphics`\ \[IndentingNewLine] (*\ << 
        Graphics`ImplicitPlot`\ *) \), "\[IndentingNewLine]", 
    \(<< Graphics`Colors`\[IndentingNewLine] (*<< 
        MathGL3d`OpenGLViewer`*) \), "\[IndentingNewLine]", 
    \(\($Line = \(-1\);\)\), "\[IndentingNewLine]", 
    \(\($TextStyle = {FontFamily \[Rule] "\<Arial\>", 
          FontSize \[Rule] 12};\)\)}], "Input"],

Cell[BoxData[{
    \(\(Off[General::spell];\)\), "\[IndentingNewLine]", 
    \(\(Off[General::spell1];\)\), "\[IndentingNewLine]", 
    \(\(ImgX := 400;\)\), "\[IndentingNewLine]", 
    \(\(ImgY := 250;\)\), "\[IndentingNewLine]", 
    \(\(parallelcolor = Blue;\)\), "\[IndentingNewLine]", 
    \(\(perpendicularcolor = Red;\)\), "\[IndentingNewLine]", 
    \(\(xcolor = Magenta;\)\), "\[IndentingNewLine]", 
    \(\(ycolor = Cyan;\)\), "\[IndentingNewLine]", 
    \(c := 299792458\ ; \  (*\ m\/s\ *) \[IndentingNewLine]m\_e := 
      9.1093826\ \ 10^\((\(-31\))\); \  (*\ kg\ *) \[IndentingNewLine]m\_p := 
      1.67262171\ \ 10^\((\(-27\))\); \  (*\ kg\ *) \[IndentingNewLine]m\_n := 
      1.67492728\ \ 10^\((\(-27\))\); \  (*\ 
      kg\ *) \[IndentingNewLine]R\_Sun\  := \ 695.8\ 10^6\ ; \  (*\ 
      m\ *) \[IndentingNewLine]M\_Sun := 1.985\ 10^30; \  (*\ 
      kg\ *) \[IndentingNewLine]k\_B\  := 1.3806505\ 10^\((\(-23\))\); \  (*\ 
      J/K\ *) \[IndentingNewLine]G := 6.6742\ 10^\((\(-11\))\); \  (*\ 
      m^3\/\(kg\ s^2\)\ *) \[IndentingNewLine]\[Mu]\_0 := 
      4  \[Pi]\ 10^\(-7\);  (*\ \(V\ s\)\/\(A\ m\)\ *) \[IndentingNewLine]\
\[Epsilon]\_0 := 
      1\/\(\[Mu]\_0\ c^2\); \  (*\ \(A\ s\)\/\(V\ m\)\ \
*) \[IndentingNewLine]q\_e := \ 1.60217653\ 10^\((\(-19\))\); \  (*\ 
      A\ s\ *) \[IndentingNewLine]AU\  := \ 149597870691; \  (*\ 
      m\ *) \[IndentingNewLine]On[General::spell];\), "\[IndentingNewLine]", 
    \(\(On[General::spell1];\)\)}], "Input"],

Cell[BoxData[
    \(\(\( (*\ \(energy2velocity\  &\)\ velocity2energy\ conversion\ *) \)\(\
\[IndentingNewLine]\)\(\ \)\(vkin[Wkin_, m_] := 
      0 \((\@\(2  Wkin\/m\))\)\  + 
        1\ c \@\( 1 - \((m\ c^2)\)^2\/\((Wkin + m\ c^2)\)^2\)\
\[IndentingNewLine]
    Wkin[vkin_, m_] := 
      0 \((\(1\/2\) m\ vkin^2)\) + 
        1\ \((\(m\ c^2\)\/\@\(1 - \((vkin\/c)\)^2\) - 
              m\ c^2)\)\)\)\)], "Input"],

Cell[BoxData[{
    \(\(EE\_vec := {EE\_x[t], EE\_y[t], 
          EE\_z[t]};\)\), "\[IndentingNewLine]", 
    \(\(BB\_vec := {BB\_x[t], BB\_y[t], 
          BB\_z[t]};\)\), "\[IndentingNewLine]", 
    \(\(b\_vec := {b\_x[t], b\_y[t], b\_z[t]};\)\), "\[IndentingNewLine]", 
    \(\(e\_x := {1, 0, 0};\)\), "\[IndentingNewLine]", 
    \(\(e\_y := {0, 1, 0};\)\), "\[IndentingNewLine]", 
    \(\(e\_z := {0, 0, 1};\)\), "\[IndentingNewLine]", 
    \(\(EE\_x[t_] := EE\_x0\ 0;\)\), "\[IndentingNewLine]", 
    \(\(EE\_y[t_] := EE\_y0\ 0;\)\), "\[IndentingNewLine]", 
    \(\(EE\_z[t_] := 0.003;\)\), "\[IndentingNewLine]", 
    \(\(BB\_x[t_] := BB\_x0\ 0;\)\), "\[IndentingNewLine]", 
    \(\(BB\_y[t_] := BB\_y0\ 0;\)\), "\[IndentingNewLine]", 
    \(\(BB\_z[t_] := 0.1;\)\), "\[IndentingNewLine]", 
    \(\(\[Gamma]\[Gamma][t_] := 
        1\/\@\(1 - \((b[t])\)\^2\);\)\), "\[IndentingNewLine]", 
    \(\(b[
          t_] := \@\(\((b\_x[t])\)\^2 + \((b\_y[t])\)\^2 + \
\((b\_z[t])\)\^2\);\)\), "\[IndentingNewLine]", 
    \(\(ini01 := 
        b\_x[tmin] \[Equal] 
          0.5\ \ vkin[25\ 1000\ q\_e, m\_e]/c;\)\), "\[IndentingNewLine]", 
    \(\(ini02 := 
        b\_y[tmin] == 
          0.5\ \ vkin[25\ 1000\ q\_e, m\_e]/c;\)\), "\[IndentingNewLine]", 
    \(\(ini03 := b\_z[tmin] == vkin[25\ 1000\ q\_e, m\_e]/c;\)\)}], "Input"],

Cell[BoxData[
    \( (*b[t_] = 0; BB\_z[t_] := \ BB\_0; \ 
      EE\_z[t_] := \ EE\_0;*) \)], "Input"],

Cell[BoxData[{
    \(eqn01 = \[PartialD]\_t b\_x[
            t] == \(1\/\(\(\ \)\(\(m\_e\) 
                c\ \((\[Gamma]\[Gamma][t])\)\^3\ \((1 - \((b[t])\)\^2 - \
\((b\_x[t])\)\^2)\)\)\)\) \((q\_e\ \((\ 
                e\_x . \((EE\_vec\  + 
                      c\ b\_vec\ \[Cross]
                          BB\_vec\ )\))\))\)\), "\[IndentingNewLine]", 
    \(eqn02 = \[PartialD]\_t b\_y[
            t] == \(1\/\(\(\ \)\(\(m\_e\) 
                c\ \((\[Gamma]\[Gamma][t])\)\^3\ \((1 - \((b[t])\)\^2 - \
\((b\_y[t])\)\^2)\)\)\)\) \((q\_e\ \((\ 
                e\_y . \((EE\_vec\  + 
                      c\ b\_vec\ \[Cross]
                          BB\_vec\ )\))\)\ )\)\), "\[IndentingNewLine]", 
    \(eqn03 = \[PartialD]\_t b\_z[
            t] == \(1\/\(\(\ \)\(\(m\_e\) 
                c\ \((\[Gamma]\[Gamma][t])\)\^3\ \((1 - \((b[t])\)\^2 - \
\((b\_z[t])\)\^2)\)\)\)\) \((q\_e\ \((\ 
                e\_z . \((EE\_vec\  + 
                      c\ b\_vec\ \[Cross]BB\_vec\ )\))\)\ )\)\)}], "Input"],

Cell[BoxData[{
    \(\(tmin = 0;\)\), "\[IndentingNewLine]", 
    \(\(tmax = 100000;\)\), "\[IndentingNewLine]", 
    \(\(ts = {};\)\), "\[IndentingNewLine]", 
    \(\(stepcounter = 0;\)\), "\[IndentingNewLine]", 
    \(\(sol = 
        NDSolve[{eqn01, eqn02, eqn03, ini01, ini02, ini03}, \ {b\_x[t], 
            b\_y[t], b\_z[t]}, {t, tmin, 
            tmax}, \[IndentingNewLine]StepMonitor \[RuleDelayed] {AppendTo[
                ts, {stepcounter, 
                  t}]; \(stepcounter++\)} \
(*\(,\)\(\[IndentingNewLine]\)\(MaxSteps \[Rule] \[Infinity]\)\
*) \[IndentingNewLine]];\)\), "\[IndentingNewLine]", 
    \(\(Print[
        stepcounter - 
          1, \ "\< steps were made for iteration\>"];\)\), "\
\[IndentingNewLine]", 
    \(\(\[Beta]\_x[\[Rho]_] := 
        sol[\([1, 1, 2]\)]\  /. 
          t \[Rule] \[Rho];\)\), "\[IndentingNewLine]", 
    \(\(\[Beta]\_y[\[Rho]_] := 
        sol[\([1, 2, 2]\)]\  /. 
          t \[Rule] \[Rho];\)\), "\[IndentingNewLine]", 
    \(\(\[Beta]\_z[\[Rho]_] := 
        sol[\([1, 3, 2]\)]\  /. 
          t \[Rule] \[Rho];\)\), "\[IndentingNewLine]", 
    \(\(\[Beta][t_] := 
        Evaluate[\@\(\((\[Beta]\_x[t])\)\^2 + \((\[Beta]\_y[t])\)\^2 + \((\
\[Beta]\_z[t])\)\^2\)];\)\), "\[IndentingNewLine]", 
    \(\(\[Beta]\_p[t_] := 
        Evaluate[\@\(0 \((\[Beta]\_x[t])\)\^2 + 0 \((\[Beta]\_y[t])\)\^2 + \
\((\[Beta]\_z[t])\)\^2\)];\)\), "\[IndentingNewLine]", 
    \(\(\[Beta]\_s[t_] := 
        Evaluate[\@\(\((\[Beta]\_x[t])\)\^2 + \((\[Beta]\_y[t])\)\^2 + 0 \((\
\[Beta]\_z[t])\)\^2\)];\)\)}], "Input"],

Cell[BoxData[{
    RowBox[{
      RowBox[{"Plot", "[", "\[IndentingNewLine]", 
        RowBox[{\({\[IndentingNewLine]\[Beta]\_s[
              t\ ], \[IndentingNewLine]\[Beta]\_x[
              t], \[IndentingNewLine]\[Beta]\_y[
              t], \[IndentingNewLine]\[Beta]\_p[
              t], \[IndentingNewLine]\[Beta][t]\[IndentingNewLine]}\), 
          ",", \({t, 0, Last[Last[ts]]}\), ",", 
          "\[IndentingNewLine]", \(PlotRange \[Rule] All\), ",", 
          "\[IndentingNewLine]", \(PlotStyle \[Rule] \
{\[IndentingNewLine]perpendicularcolor, \[IndentingNewLine]xcolor, \
\[IndentingNewLine]ycolor, \[IndentingNewLine]parallelcolor, \
\[IndentingNewLine]RGBColor[0, 0, 0]\[IndentingNewLine]}\), ",", 
          "\[IndentingNewLine]", \(ImageSize \[Rule] {ImgX, ImgY}\), ",", 
          "\[IndentingNewLine]", 
          RowBox[{"PlotLabel", "\[Rule]", 
            RowBox[{"\"\<\!\(\*
StyleBox[\(\[Beta]\_s\),\nFontColor->RGBColor[1, 0, 0]]\) , \!\(\*
StyleBox[\(\[Beta]\_x\),\nFontColor->RGBColor[1, 0, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_y\),\nFontColor->RGBColor[0, 1, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_p\),\nFontColor->RGBColor[0, 0, 1]]\), \[Beta]\>\"", 
              "<>", "\"\< -- \>\"", "<>", "\"\<BField =\>\"", 
              "<>", \(ToString[BB\_vec]\), "<>", "\"\< T\>\"", "<>", 
              "\"\< -- \>\"", "<>", "\"\< EField =\>\"", 
              "<>", \(ToString[EE\_vec]\), "<>", 
              "\"\< V \!\(m\^\(-1\)\)\>\""}]}], ",", 
          "\[IndentingNewLine]", \(FrameLabel \[Rule] {"\<t / s\>", \
"\<\[Beta]\>"}\), ",", "\[IndentingNewLine]", \(Frame \[Rule] True\), ",", 
          "\[IndentingNewLine]", \(Axes \[Rule] None\)}], 
        "\[IndentingNewLine]", "]"}], 
      ";"}], "\[IndentingNewLine]", \(Print["\<initial conditions: \n\>", \*"\
\"\<\!\(\[Beta]\_x\)[t = \>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)}], "Input"],

Cell[BoxData[{
    RowBox[{
      RowBox[{"LogLinearPlot", "[", "\[IndentingNewLine]", 
        RowBox[{\({\[IndentingNewLine]\[Beta]\_s[
              t\ ], \[IndentingNewLine]\[Beta]\_x[
              t], \[IndentingNewLine]\[Beta]\_y[
              t], \[IndentingNewLine]\[Beta]\_p[
              t], \[IndentingNewLine]\[Beta][t]\[IndentingNewLine]}\), 
          ",", \({t, 0, Last[Last[ts]]}\), ",", 
          "\[IndentingNewLine]", \(PlotRange \[Rule] All\), ",", 
          "\[IndentingNewLine]", \(PlotStyle \[Rule] \
{\[IndentingNewLine]perpendicularcolor, \[IndentingNewLine]xcolor, \
\[IndentingNewLine]ycolor, \[IndentingNewLine]parallelcolor, \
\[IndentingNewLine]RGBColor[0, 0, 0]\[IndentingNewLine]}\), ",", 
          "\[IndentingNewLine]", \(ImageSize \[Rule] {ImgX, ImgY}\), ",", 
          "\[IndentingNewLine]", 
          RowBox[{"PlotLabel", "\[Rule]", 
            RowBox[{"\"\<\!\(\*
StyleBox[\(\[Beta]\_s\),\nFontColor->RGBColor[1, 0, 0]]\) , \!\(\*
StyleBox[\(\[Beta]\_x\),\nFontColor->RGBColor[1, 0, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_y\),\nFontColor->RGBColor[0, 1, 1]]\), \!\(\*
StyleBox[\(\[Beta]\_p\),\nFontColor->RGBColor[0, 0, 1]]\), \[Beta] \>\"", 
              "<>", "\"\< -- \>\"", "<>", "\"\<BField =\>\"", 
              "<>", \(ToString[BB\_vec]\), "<>", "\"\< T\>\"", "<>", 
              "\"\< -- \>\"", "<>", "\"\< EField =\>\"", 
              "<>", \(ToString[EE\_vec]\), "<>", 
              "\"\< V \!\(m\^\(-1\)\)\>\""}]}], ",", 
          "\[IndentingNewLine]", \(FrameLabel \[Rule] {"\<t / s\>", \
"\<\[Beta]\>"}\), ",", "\[IndentingNewLine]", \(Frame \[Rule] True\), ",", 
          "\[IndentingNewLine]", \(Axes \[Rule] None\)}], 
        "\[IndentingNewLine]", "]"}], 
      ";"}], "\[IndentingNewLine]", \(Print["\<initial conditions: \n\>", \*"\
\"\<\!\(\[Beta]\_x\)[t = \>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)}], "Input"],

Cell[BoxData[{
    \(\(diagram3D = 
        ParametricPlot3D[\[IndentingNewLine]{\[IndentingNewLine]\[Beta]\_x[
              t], \[IndentingNewLine]\[Beta]\_y[
              t], \[IndentingNewLine]\[Beta]\_z[t]\[IndentingNewLine]}, {t, 
            0, Last[Last[ts]]}, \[IndentingNewLine]PlotRange \[Rule] 
            All, \[IndentingNewLine]AxesLabel \[Rule] \
{\*"\"\<\!\(\[Beta]\_x\)\>\"", \*"\"\<\!\(\[Beta]\_y\)\>\"", \*"\"\<\!\(\
\[Beta]\_z\)\>\""}, \[IndentingNewLine]ImageSize \[Rule] {ImgX, 
              ImgY}, \[IndentingNewLine]PlotLabel -> "\<\[Beta] for \>" <> \
"\<t = \>" <> ToString[tmin] <> "\< s\>" <> "\< to \>" <> "\<t = \>" <> 
              ToString[tmax] <> "\< s\>" <> "\< -- \>" <> "\<BField =\>" <> 
              ToString[BB\_vec] <> "\< T\>" <> "\< -- \>" <> "\< EField =\>" <> 
              ToString[
                EE\_vec] <> \*"\"\< V \
\!\(m\^\(-1\)\)\>\""\[IndentingNewLine]];\)\), "\[IndentingNewLine]", 
    \(\(Print["\<initial conditions: \n\>", \*"\"\<\!\(\[Beta]\_x\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)\)}], "Input"],

Cell[BoxData[{
    \(\(ParametricPlot[\[IndentingNewLine]{\[Beta]\_p[t], \[Beta]\_s[t]}, {t, 
          tmin, Last[Last[ts]]}, \[IndentingNewLine]PlotRange \[Rule] 
          All, \[IndentingNewLine]PlotStyle \[Rule] \
{\[IndentingNewLine]perpendicularcolor, \[IndentingNewLine]parallelcolor, \
\[IndentingNewLine]RGBColor[0, 0, 
              0]\[IndentingNewLine]}, \[IndentingNewLine]ImageSize \[Rule] \
{ImgX, ImgY}, \[IndentingNewLine]PlotLabel -> "\<\[Beta] for \>" <> "\<t = \
\>" <> ToString[tmin] <> "\< s\>" <> "\< to \>" <> "\<t = \>" <> 
            ToString[tmax] <> "\< s\>" <> "\< -- \>" <> "\<BField =\>" <> 
            ToString[BB\_vec] <> "\< T\>" <> "\< -- \>" <> "\< EField =\>" <> 
            ToString[
              EE\_vec] <> \*"\"\< V \!\(m\^\(-1\)\)\>\"", \
\[IndentingNewLine]FrameLabel \[Rule] {\*"\"\<\!\(\[Beta]\_p\)=\!\(\[Beta]\_z\
\)\>\"", \*"\"\<\!\(\[Beta]\_s\)=\!\(\@\((\[Beta]\_x\^2 + \
\[Beta]\_y\^2)\)\)\>\""}, \[IndentingNewLine]Frame \[Rule] 
          True, \[IndentingNewLine]Axes \[Rule] 
          None\[IndentingNewLine]];\)\), "\[IndentingNewLine]", 
    \(\(Print["\<initial conditions: \n\>", \*"\"\<\!\(\[Beta]\_x\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini01, \ b\_x[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_y\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini02, \ b\_y[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)]\ , "\<\n\>", \*"\"\<\!\(\[Beta]\_z\)[t = \
\>\"", tmin, "\< s] = \>", 
        N[\(Solve[ini03, \ b\_z[0]]\)\_\(\(\[LeftDoubleBracket]\)\(1, 1, \
2\)\(\[RightDoubleBracket]\)\)], "\<\n\>"];\)\)}], "Input"]
},
FrontEndVersion->"5.1 for Microsoft Windows",
ScreenRectangle->{{0, 1024}, {0, 685}},
WindowSize->{702, 651},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
ShowSelection->True
]

(*******************************************************************
Cached data follows.  If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of  the file.  The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1754, 51, 522, 9, 170, "Input"],
Cell[2279, 62, 1485, 24, 483, "Input"],
Cell[3767, 88, 415, 9, 168, "Input"],
Cell[4185, 99, 1332, 26, 379, "Input"],
Cell[5520, 127, 102, 2, 30, "Input"],
Cell[5625, 131, 1016, 20, 120, "Input"],
Cell[6644, 153, 1563, 34, 348, "Input"],
Cell[8210, 189, 2334, 40, 558, "Input"],
Cell[10547, 231, 2344, 40, 558, "Input"],
Cell[12894, 273, 1538, 25, 358, "Input"],
Cell[14435, 300, 1691, 27, 424, "Input"]
}
]
*)



(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)

Antworten:
Frühere   Chronologischer Index   Spätere
Vorherige   Thematischer Index   Nächste

DMUG DMUG-Archiv, http://www.mathematica.ch/archiv.html