DMUG-Archiv 2012

Frühere   Chronologischer Index   Spätere
Vorherige   Thematischer Index   Nächste

Re: Aufgabe::Rechteckige Matrizen

Hallo Robert,

nach Bildung der Pseudoinversen erhält man mit den von Null
verschiedenen Elementen die Lottozahlen für den
21. Dezember, nur leider ...

wissen Sie nicht, bei welcher Lottogesellschaft und, schlimmer noch,
ob o.g. Lotto-Eigenschaft auch für diese Matrix

{{1, 20, 4, 10, 6, 9, 2, 12, 5, 11, 15, 19, 17, 3, 8, 7, 13, 14, 16, 18},
 {2, 1, 20, 4, 10, 14, 5, 3, 11, 6, 16, 9, 12, 8, 7, 13, 15, 17, 18, 19},
 {4, 2, 1, 15, 6, 14, 5, 10, 9, 8, 13, 12, 18, 7, 11, 16, 17, 19, 20, 3},
 {5, 3, 2, 1, 4, 9, 16, 15, 6, 10, 12, 8, 13, 14, 7, 11, 17, 18, 19, 20},
 {9, 3, 2, 16, 6, 17, 5, 15, 12, 13, 10, 11, 14, 7, 18, 19, 8, 20, 4, 1},
 {13, 18, 3, 9, 17, 15, 7, 8, 6, 16, 14, 19, 20, 10, 11, 2, 12, 1, 5, 4},
 {16, 17, 15, 14, 10, 7, 9, 12, 5, 6, 11, 8, 13, 18, 19, 3, 20, 1, 4, 2},
 {17, 15, 6, 16, 14, 9, 12, 4, 10, 13, 11, 5, 18, 19, 20, 7, 1, 2, 3, 8},
 {19, 7, 20, 17, 15, 16, 13, 2, 6, 14, 18, 8, 9, 10, 4, 1, 5, 11, 3, 12},
 {18, 11, 15, 1, 20, 19, 13, 9, 14, 17, 7, 2, 6, 8, 3, 4, 5, 10, 12, 16},
 {20, 19, 10, 18, 14, 5, 16, 8, 13, 15, 1, 9, 6, 3, 2, 7, 4, 11, 12, 17}}

zutrifft; die gesuchten Eigenschaften hat sie natürlich.

Gruss
Udo.

On 06.12.2012 06:31, Udo und Susanne Krause wrote:
Hallo,

hier sind drei weitere Matrizen dieser Art, die Frage bleibt: welcher
Art?


{{1, 18, 17, 16, 9, 3, 5, 2, 4, 7, 6, 10, 15, 13, 12, 14, 8, 11},
 {2, 1, 18, 17, 16, 11, 14, 4, 6, 3, 5, 7, 10, 9, 8, 12, 13, 15},
 {4, 2, 1, 18, 17, 16, 9, 13, 5, 8, 6, 12, 7, 15, 11, 10, 14, 3},
 {5, 3, 2, 1, 18, 4, 17, 16, 15, 14, 8, 7, 6, 13, 11, 9, 12, 10},
 {9, 3, 2, 8, 18, 7, 6, 17, 16, 5, 15, 14, 4, 10, 13, 11, 12, 1},
 {13, 18, 12, 17, 16, 11, 15, 6, 7, 10, 3, 8, 5, 1, 9, 14, 4, 2},
 {15, 5, 6, 1, 14, 18, 13, 12, 17, 11, 10, 8, 16, 7, 2, 9, 3, 4},
 {16, 7, 1, 6, 15, 18, 14, 17, 13, 12, 8, 10, 2, 9, 11, 3, 4, 5},
 {17, 11, 4, 2, 3, 7, 5, 6, 1, 12, 10, 18, 9, 16, 14, 15, 13, 8},
 {18, 17, 4, 7, 2, 3, 6, 5, 11, 1, 16, 10, 9, 8, 15, 13, 12, 14}}



{{1, 16, 7, 4, 6, 3, 2, 11, 10, 5, 9, 8, 13, 12, 14, 15},
 {2, 1, 15, 14, 12, 7, 6, 5, 4, 3, 10, 8, 9, 13, 11, 16},
 {4, 2, 1, 16, 15, 14, 11, 13, 7, 5, 6, 9, 10, 12, 8, 3},
 {5, 3, 2, 1, 16, 15, 4, 13, 14, 11, 6, 8, 7, 10, 9, 12},
 {9, 3, 8, 2, 7, 6, 5, 15, 16, 4, 10, 14, 13, 11, 12, 1},
 {13, 12, 16, 15, 11, 10, 9, 6, 5, 4, 7, 8, 14, 1, 3, 2},
 {16, 15, 14, 13, 12, 11, 10, 9, 6, 5, 7, 8, 1, 2, 3, 4},
 {14, 16, 13, 5, 1, 12, 7, 4, 6, 11, 15, 10, 3, 2, 9, 8},
 {15, 4, 2, 5, 7, 3, 11, 6, 1, 10, 16, 13, 9, 8, 12, 14}}



{{1, 14, 12, 11, 8, 6, 5, 4, 7, 9, 2, 3, 10, 13},
 {2, 1, 7, 9, 10, 11, 4, 3, 6, 5, 8, 12, 13, 14},
 {4, 2, 1, 10, 11, 8, 9, 5, 6, 7, 12, 13, 14, 3},
 {5, 3, 8, 7, 1, 2, 9, 6, 10, 11, 12, 13, 14, 4},
 {11, 9, 10, 3, 4, 5, 12, 13, 6, 7, 14, 2, 8, 1},
 {9, 5, 4, 7, 6, 8, 10, 11, 12, 13, 14, 1, 3, 2},
 {13, 9, 10, 11, 12, 14, 1, 6, 8, 5, 4, 2, 3, 7},
 {12, 9, 13, 14, 11, 5, 1, 6, 10, 2, 3, 4, 7, 8}}


Gruss
Udo.

welche Eigenschaften haben die folgenden Matrizen gemeinsam?

{{1, 10, 9, 12, 11, 3, 6, 4, 8, 7, 5, 2},
  {2, 1, 10, 11, 5, 12, 3, 7, 4, 8, 6, 9},
  {4, 2, 12, 1, 9, 3, 8, 11, 10, 6, 7, 5},
  {5, 4, 3, 2, 11, 1, 12, 9, 7, 8, 6, 10},
  {7, 8, 1, 5, 9, 4, 2, 12, 10, 3, 11, 6},
  {8, 9, 6, 12, 2, 3, 5, 4, 10, 11, 7, 1},
  {10, 12, 5, 6, 9, 11, 4, 8, 2, 7, 1, 3}}



{{1, 10, 3, 6, 7, 9, 8, 4, 5, 2},
  {2, 1, 9, 7, 10, 8, 3, 5, 6, 4},
  {4, 2, 1, 10, 5, 9, 3, 7, 8, 6},
  {5, 3, 7, 6, 2, 1, 4, 10, 9, 8},
  {9, 4, 3, 10, 6, 1, 2, 7, 8, 5},
  {10, 8, 7, 5, 9, 4, 3, 6, 2, 1}}



{{1, 8, 6, 4, 5, 7, 3, 2},
  {2, 1, 8, 3, 7, 6, 5, 4},
  {4, 2, 1, 3, 8, 7, 5, 6},
  {5, 8, 3, 4, 2, 6, 1, 7},
  {8, 4, 5, 6, 3, 7, 2, 1}}



{{1, 6, 4, 3, 5, 2},
  {2, 1, 6, 4, 5, 3},
  {4, 2, 6, 3, 5, 1},
  {5, 3, 2, 6, 1, 4}}



{{1, 4, 3, 2},
  {2, 1, 4, 3},
  {4, 2, 3, 1}}



{{1, 2},
  {2, 1}}



{{1}}



Mit den besten Grüssen
Udo.







Verweise:
Frühere   Chronologischer Index   Spätere
Vorherige   Thematischer Index   Nächste

DMUG DMUG-Archiv, http://www.mathematica.ch/archiv.html