Also, ohne Gleichungssystem kann man die Frage nicht beantworten...
-----Ursprüngliche Nachricht-----
Von: Holger Gerhardt [mailto:gerhardt@XXXXXXX.de]
Gesendet: Donnerstag, 5. April 2001 18:01
An: DMUG-Mailingliste
Betreff: Ausgabe von »InequalitySolve« weiter verwenden
Sehr geehrte Damen und Herren,
da ich auf der Suche nach einer Lösung für folgendes Problem
bisher nicht fündig geworden bin, wäre ich für Hilfestellung sehr
dankbar:
Ich möchte über mit »InequalitySolve« gefundene Intervalle
integrieren. Da Mathematica nun aber als Integrationsgrenzen
einzelne Werte (nennen wir sie a und b oder c und d) verlangt,
können die mit dem Befehl
InequalitySolve[..., x]
gefundenen Intervalle der Form
x <= a,
x >= b,
a <= x <= b,
a <= x <= b || c <= x <= d
nicht direkt weiter verwendet werden.
Mit welchem Befehl kann ich a, b, c und d aus den Ungleichungen
isolieren, sodass sie mir als Integralgrenzen zur Verfügung
stehen?
Wie kann ich darüber hinaus Mathematica feststellen lassen, ob
ein von »InequalitySolve« gefundenes Intervall die Form
x <= a oder x >= a
hat, woran sich anschließen würde, dass als untere bzw. obere
Integrationsgrenze minus respektive plus unendlich eingesetzt
würde.
Noch einmal herzlichen Dank für jede Hilfestellung sagt
Holger Gerhardt
PS:
Den möglichen Umweg, statt Ungleichungen Gleichungen zu
formulieren, diese mit »Solve« zu lösen und die ausgegebenen
Zuordnungsregeln der Form
{{x -> a}, {x -> b}}
für die Integrationsgrenzen zu nutzen, habe ich bereits
beschritten. Aus irgendeinem Grund liefert »Solve« für die
verwendeten Gleichungen jedoch kein korrektes Ergebnis, während
»InequalitySolve« dies tut.